SG-3081 Isolated Current Input / Output Module User's Manual

Introduction

The SG-3081 is a current input to voltage or current output signal conditioning module. It has 1000Vdc three-way isolation for input, output and power. And it also can change the input/output range via internal configuration switches.

The SG-3081 has an LED display to show whether the SG-3081 is functioning correctly and has two VRs (Zero, Span) to calibrate the input/output range accuracy.

The bandwidth of the SG-3081 is typically 3KHz. It's easy to mount the SG-3081 on a standard DIN rail and can operate in environments with wide temperature range.

Specifications

Current input:

Unipolar: 0~20mA, 4~20mA
Input impedance: 250Ω

Voltage output:

Unipolar: 0~5V, 0~10V
Output impedance: <50Ω
Drive: 10mA (max.)

Current Output:

■ Current: 0 ~ 20mA, 4 ~ 20mA

■ Current load resistor: 0~500 Ω (Source)

General

■ Three-way isolation: 1000 Vdc

Accuracy: ±0.1% of full range (typical)

■ Operation temperature range:-25°C~75°C

■ Storage temperature range:-30°C~85°C

Operation bandwidth: 3KHz

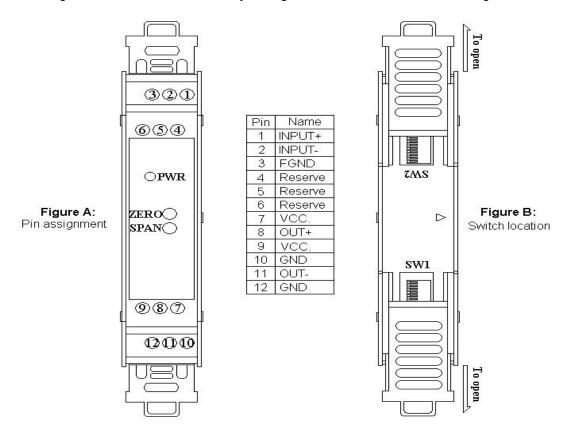
■ Weight: 95.5 gram

Supply Voltage

■ Input Range: 10~30Vdc

@24Vdc (Typical)

Consumption: 1.61W (voltage output)

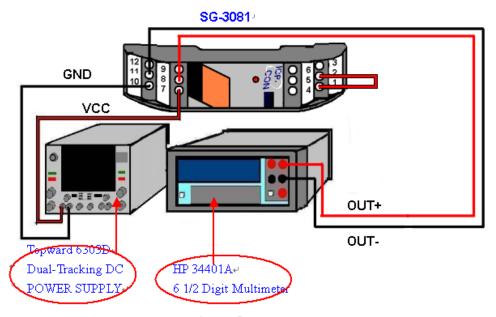

2.10W (current output)

Configuration

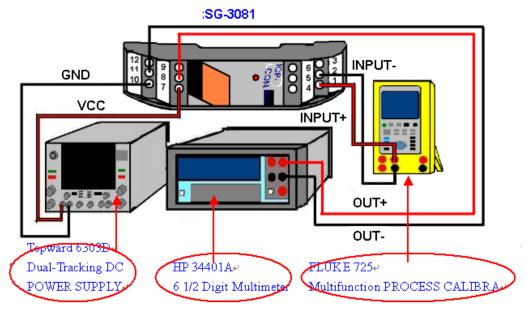
The terminal wiring for the SG-3081 is shown in Figure A. Positive power terminals pins 7 and 9 are internally connected, as are negative pins 10 and 12. Power can be connected through the adjacent modules, making wiring much easier. The SG-3081 uses a power input range of 10~30Vdc.

Table 1 shows the switch positions used to configure the input and output range.

The I/O configuration switches are located inside the module. And can be accessed by removing the DIN-rail bracket covers by sliding them in the direction shown in Figure B.



Range (SW1)						Range (SW2)								Jumper	
1	2	3	4	5	6	1	2	3	4	5	6	7	8	1	2
	♦		•		•	•									
	•		•		•		•		•		•		•		
•		•		•			•	•			•		•		
•		•		•			•		•		•		•		
	•		•		•	•									
	•		•		•		•			•		•	•	♦	•
•		•		•		•						•			
♦		♦		•		♦									
	1														


Table 1: Input to output range (SW1, 2, Jumper1, 2)

* Factory default setting

Calibration Procedure

Figure C:Offset Regulate

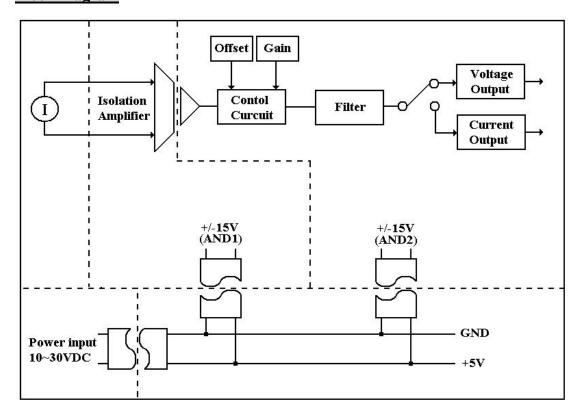
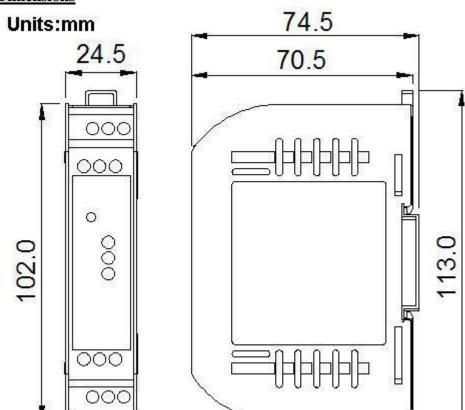


Figure D:
Gain Regulate


- 1. Refer to figure C to adjust the offset value.
 - (1) Connect pin7 to the +24Vdc connection and pin 10 to GND.
 - (2) Connect pin8 and pin 11 to the meter.
 - (3) Use wire to connect pins 1 and 2.
 - (4) Changing the SW1 and SW2 depends on your Input/Output range. Watch the value of the meter and adjust the VR1 (ZERO) value to the minimum value of this range.

- 2. Refer to figure D to adjust the gain value.
 - (1) Connect pin7 to the +24Vdc connection and pin 10 to GND.
 - (2) Connect pin8 and pin 11 to the meter.
 - (3) Connect pins 1 and 2 to input source.
 - (4) Changing the SW1 and SW2 depends on your input/output range. Watch the value of the meter and adjust the VR2 (SPAN) value to the maximum value of this range.

Block Diagram

Dimensions

