

PCI-82x Series Cards User Manual

Multifunction Boards

Version 1.4, Nov. 2015

SUPPORTS

This manual relates to the following Boards: PCI-822LU and PCI-826LU.

WARRANTY

All products manufactured by ICP DAS are warranted against defective materials for a period of one year from the date of delivery to the original purchaser.

WARNING

ICP DAS assumes no liability for damages consequent to the use of this product. ICP DAS reserves the right to change this manual at any time without notice. The information furnished by ICP DAS is believed to be accurate and reliable. However, no responsibility is assumed by ICP DAS for its use, nor for any infringements of patents or other rights of third parties resulting from its use.

COPYRIGHT

Copyright © 2014 by ICP DAS. All rights are reserved.

TRADEMARK

Names are used for identification purposes only and may be registered trademarks of their respective companies.

CONTACT US

If you have any questions, feel tree to contact us by email at: <u>service@icpdas.com</u>, <u>service.icpdas@gmail.com</u> We will respond to you within 2 working days.

TABLE OF CONTENTS

PA	PACKING LIST				
RE	LATED IN	FORMATION	. 5		
1.	. INTRODUCTION				
	1.1	Overview	6		
	1.1	Features	-		
	1.2	SPECIFICATIONS			
	1.4				
_			-		
2	HAR	DWARE CONFIGURATION	10		
	2.1	Layout	10		
	2.2	JUMPER SETTINGS	11		
	2.2.1	JP1 (Analog Input Type)			
	2.2.2	JP6/JP7 (Analog Output Range)			
	2.2.3	JP3/JP5 (Analog Output Type)			
	2.2.4	JP4 (Digital I/O Mode)			
	2.2.5	JP8 (Digital Input Pull-high/low)	13		
	2.3	CARD ID SWITCH	14		
	2.4	BLOCK DIAGRAM	15		
	2.5	ANALOG INPUT SIGNAL CONNECTIONS	16		
	2.6	Pin Assignments	21		
3	HAR	DWARE INSTALLATION	22		
4	SOF	rware installation	.26		
	4.1	OBTAINING THE DRIVER INSTALLATION PACKAGE	26		
	4.2	Plug and Play Driver Installation	29		
	4.3	VERIFYING THE INSTALLATION	31		
	4.3.1	Accessing Windows Device Manager	31		
	4.3.2	Check the Installation	34		
5	TEST	ING THE PCI-822/826 SERIES CARD	.35		
	5.1	Self-Test Wiring	35		
	5.1.1	Digital Input/Output Test Wiring	35		
	5.1.2	Analog Input/Output Test Wiring	36		
	5.2	Execute the Test Program	37		

PCI-82x Series Cards Multifunction Boards

6	I/O C	ONTROL REGISTERS	.41
	6.1	DETERMINING THE I/O ADDRESS	. 41
	6.2	I/O Address Mapping	. 43
	6.3	Bar 1: Digital I/O Registers	. 44
	6.3.1	Read/Write 16-bit Data for Port A/B	. 44
	6.3.2	Read/Write I/O Port Selection	. 44
	6.3.3	Read the Card ID (SW1) and the DI/O Jumper (JP4) Settings	. 45
	6.4	BAR 2: ANALOG OUTPUT REGISTERS	. 46
	6.4.1	Read/Write 16-bit D/A Data	. 46
	6.4.2	Read/Write Analog Output Channel Selection	. 46
	6.4.3	Enable/Disable an Analog Output Channel	. 47
	6.5	BAR 3: ANALOG INPUT REGISTERS	. 48
	6.5.1	Read/Write the A/D Polling Configuration	. 48
	6.5.2	Write the AI Software Trigger	. 50
	6.5.3	Read the FIFO Data	. 50
	6.5.4	Read/Write AI Pacer Sampling Rate	. 50
	6.5.5	Read/Write MagicScan Counter Value	. 51
	6.5.6	Write AI Pacer Configuration	. 51
	6.5.7	Read the Status of the FIFO/JP1/ADC	. 54
	6.5.8	Read/Write the Base Frequency and the MagicScan Control Settings	. 54
	6.5.9	Start/Stop MagicScan	. 56
	6.5.10	Clear the Interrupt and External Trigger	. 56
	6.5.11	Read/Write the Interrupt Control/Status	. 56
7	CALII	3RATION	.61
			64
		IBRARY FUNCTION DESCRIPTION	
		Error Code Definitions	
		Driver Functions	
		<_DriverInit	
		<_DriverClose	
		<_GetConfigAddressSpace	
		Digital I/O Functions	
		<_SetDIOMode32	
		(_WriteDO	
		<_ReadDl	
		Analog Output Functions	
	PCI82)	(_WriteAO	. 71

	PCI82X_WriteAOH	. 72
	A1-5: Analog Input Functions	. 73
	PCI82X_PollingAI	. 73
	PCI82X_PollingAIH	. 74
	PCI82X_StartAI	. 75
	PCI82X_StartAIScan	. 76
	PCI82X_GetAIBuffer	. 78
	PCI82X_GetAIBufferH	. 78
	PCI82X_StopAI	
A2	2. DAUGHTERBOARDS	. 80
	DB-37	. 80
	DN-37	. 80
	DB-16P Isolated Digital Input Daughterboard	. 81
	DB-16R Relay Output Daughterboard	. 82

Packing List

The shipping package includes the following items:

	One of the following multi-function cards: PCI-822LU PCI-826LU	Note: If any of these items is missing or damaged, contact the dealer from whom you purchased the product.
w.o.r	One CA-4002 D-Sub connector	Save the shipping materials and carton in case you need to ship or store the product in the future.
	One printed Quick Start Guide	
P2 BAS	One software utility CD	

Related Information

Product Page for the PCI-826LU: http://www.icpdas.com/root/product/solutions/pc based io board/pci/pci-826lu.html

Product Page for the PCI-822LU: <u>http://www.icpdas.com/root/product/solutions/pc_based_io_board/pci/pci-822lu.html</u>

Hardware Manual, Datasheet and Quick Start Guide: More information related to PCI-822/826 Series cards can be found in the \NAPDOS\PCI\PCI-82x\Manual\ folder on the companion CD, or can be downloaded from: <u>http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/pci-82x/manual/</u>

Documentation and Software for the UniDAQ SDK: More information related to UniDAQ SDK can be found in the \NAPDOS\PCI\UniDAQ\ folder on the companion CD, or can be downloaded from: <u>http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/unidaq/</u>

1. Introduction

The PCI-822/826 Series cards provide 32/16-channel 12-bit (16-bit) Analog Input with a sampling rate of up to 250 kSamples/second, and 2-channel 16-bit Analog Output with 32-channel programmable Digital Input/Output.

1.1 Overview

The PCI-822/826 Series are high-performance multifunction cards that provide high-speed Analog and Digital I/O functions. PCI-822/826 Series cards use a Universal PCI interface that supports both the 3.3 V and the 5 V PCI bus. These cards feature a continuous, 250 kSamples/second, 12-bit (16-bit) resolution A/D converter, an 8 k-Sample hardware FIFO, a 2-channel, 16-bit D/A converter, and a 32-channel programmable Digital Input/Output and Digital Output readback. The PCI-822/826 LU provides either 32-channel single-ended or 16-channel differential Analog Input that is jumper selectable, while the PCI-826LU is equipped with a high-speed PGA (Programmable Gain Amplifier) featuring programmable gain controls (1, 2, 4 and 8).

PCI-822/826 Series cards contain an embedded Card ID switch and onboard pull-high/pull-low resistors for the Digital Input, meaning that a unique ID number can be set for each card so that can each card can be individually recognized when two or more PCI-822/826 Series cards are used in a computer at the same time. The pull-high/pull-low resistors allow the status of the Digital Input to be specified, meaning that when the Digital Input channels are disconnected, the status of the Digital Input will remain as either high or low and will not be set to floating.

PCI-822/826 Series cards provide both a programmable software trigger and a pacer trigger, and include an A/D channel scan function called MagicScan. The MagicScan controller eliminates the majority of the effort required to acquire the A/D values, such as selecting the channel, setting the Gain values and the settling time, triggering the ADC, and acquiring the data. Using the built-in MagicScan and the interrupt features, these complex tasks are effectively offloaded from the CPU. Even in channel scan mode, a different Gain code can be used for each channel, and the sampling rate can still achieve a total of 250 kS/s, making the PCI-822/826 Series well-suited to the demands of high-end applications.

1.2 Features

The following is an overview of the general features that apply to both the PCI-822 and PCI-826 Series cards. See <u>Section 1.3</u> for more detailed specifications.

1. General

Bus : Universal PCI

2. Analog Input (A/D)

- One 12-bit A/D converter with a maximum sample rate of 250 kSsamples/second (PCI-822LU)
- One 16-bit A/D converter with a maximum sample rate of 250 kSamples/second (PCI-826LU)
- 32 single-ended or 16 differential programmable input channels (PCI-822LU/PCI-826LU)
- Three different A/D trigger methods
- Three different external trigger methods
- Programmable Gain control
- Programmable offset control

3. Analog Output (D/A)

- One D/A converter
- 2-channel 16-bit voltage output
- Voltage Output Range: ± 10 V, ± 5 V, 0 to +10 V, 0 to +5 V

4. Digital Input/Output (DI/O)

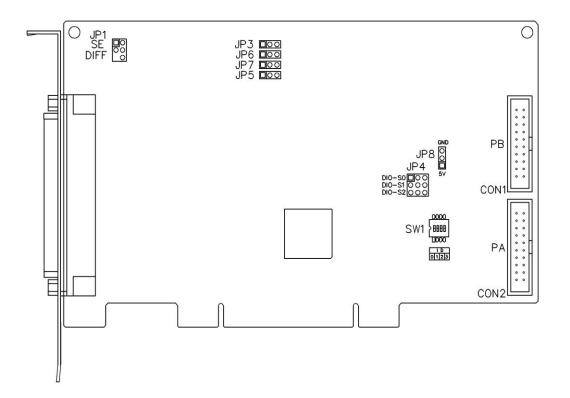
- 32-bit programmable DI/O
- High-speed data transfer rate
- Pull-high/low function on Digital Input
- Digital Output readback function

1.3 Specifications

Model	PCI-822LU	PCI-826LU			
Analog Input					
Channels 32 single-ended/16 differential					
A/D Converter	12-bit, 8 μs conversion time	16-bit, 8 μs conversion time			
Sampling Rate	250 kS/	s (Max.)			
FIFO Size	8192 s	amples			
Over voltage Protection	Continuou	us ± 35 V _{p-p}			
Input Impedance	10,000	MΩ/4pF			
Trigger Modes	Softwar	re, Pacer			
Data Transfer	Polling,	Interrupt			
Accuracy	0.1 % of FSR ± 1 LSB @ 25°C, ± 10 V	0.05 % of FSR ± 1 LSB @ 25 °C, ± 10 V			
Input Range	Gain: 1	, 2, 4, 8			
	Bipolar (V): ± 10,	± 5, ± 2.5, ± 1.25			
Zero Drift	15 ppm/	°C of FSR			
Analog Output					
Channels	2				
Resolution	16-bit				
Accuracy	± 6 LSB				
Output Range	-5 V ~ +5 V , -10 V ~ +10 V				
	0 ~ +10 V, 0 ~ +5 V				
Output Driving	± 5 mA				
Slew Rate	8.33 V/µs				
Output Impedance	0.1 Ω Max.				
Operating Mode	Software				
Programmable I/O					
Channels	32				
Digital Input					
Compatibility	5 V/TTL				
Input Voltage	Logic 0: 0.8 V (Max.)				
	Logic 1: 2.0 V (Min.)				
Pull High/Low	Yes				
Response Speed	1.0 MHz (Typical)				

Jser Manual, Ver. 1.4, Nov. 2015, PMH-024-13, Page: 8

Digital Output			
Compatibility	5 V/TTL		
Outrout Malta as	Logic 0: 0.4 V (Max.)		
Output Voltage	Logic 1: 2.4 V (Min.)		
Output Capability	Sink: 0.8 mA @ 0.8 V		
Output Capability	Source: -2.4 mA @ 2.0 V		
DO Readback	Yes		
Response Speed	1.0 MHz (Typical)		
General			
Bus Type	3.3 V/5 V Universal PCI, 32-bit		
Data Bus	16-bit		
Card ID	Yes (4-bit)		
1/O Connector	Female DB37 x 1		
I/O Connector	20-pin box header x 2		
Dimensions (L x W x D)	169 mm x 105 mm x 22 mm		
Power Consumption	1 A @ +5 V max.		
Operating Temperature	0 ~ 60 °C		
Storage Temperature	-20 ~ 70 °C		
Humidity	5 ~ 85% RH, Non-condensing		

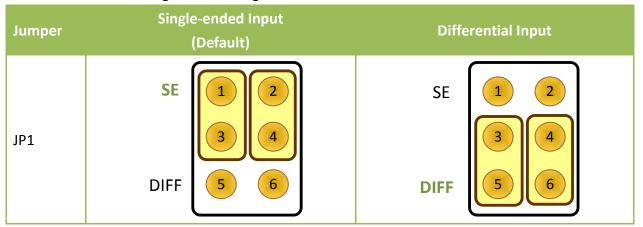

1.4 Applications

- Signal Analysis
- FFT and Frequency Analysis
- Transient Analysis
- Temperature Monitoring
- Vibration Analysis
- Energy Management
- Other industrial and laboratory measurements and control

2 Hardware Configuration

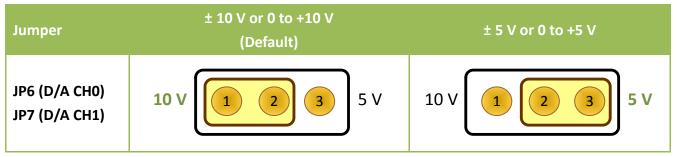
This section provides details of the hardware configuration for the PCI-822/826 Series cards, including the layout of the individual cards, the Jumper positions, and the pin assignments, etc.

2.1 Layout


Jumper	Purpose	Comment
JP1	Analog Input Type Configuration	Refer to Section 2.2.1
JP6, JP7	Analog Output Range Configuration	Refer to Section 2.2.2
JP3, JP5	Analog Output Type Configuration	Refer to Section 2.2.3
JP4	Digital Input/Output Mode Configuration	Refer to Section 2.2.4
JP8	Digital Input Pull-high/low Configuration	Refer to Section 2.2.5
SW1	Card ID Configuration	Refer to Section 2.3
CON1	The terminal for Port B	Refer to Section 2.6 for more
CON2	The terminal for Port A	detailed information about the pin
CON3	The terminal for Analog Input/Output	assignments.

2.2 Jumper Settings

PCI-822/826 Series cards include a number of jumpers that can be used to configure features such as the Analog Input/Output Type, the Analog Output Range, and the Digital Input/Output mode, etc. each of which is described in more detail below.


2.2.1 JP1 (Analog Input Type)

Jumper JP1 is used to configure the Analog Input type as either single-ended or differential. To configure single-ended input, connect pin1 to pin 3 and pin 2 to pin 4, as illustrated in the diagram below. The default configuration is single-ended.

2.2.2 JP6/JP7 (Analog Output Range)

Jumpers JP6 and JP7 are used to configure the output range for Analog Output channel 0 and 1, respectively. Connecting pins 1 and 2 sets the output range to -10 V to +10 V or 0 to +10 V, while connecting pins 2 and 3 sets the output range to -5 V to +5 V or 0 to +5 V. The default configuration is \pm 10 V.

2.2.3 JP3/JP5 (Analog Output Type)

Jumpers JP3 and JP5 are used to select the Analog output type. Connecting pins 1 and 2 sets the output type to Bipolar, while connecting pins 2 and 3 sets the output type to Unipolar. The default configuration is Bipolar.

Jumper	Bipolar (Default)	Unipolar	
JP3 (D/A CH0) JP5 (D/A CH1)	BI 2 3 UNI	BI 2 3 UNI	

2.2.4 JP4 (Digital I/O Mode)

The JP4 Jumper block is used to configure the Digital Input/Output mode as either Jumper Selectable or Software Programmable Mode. Connecting pins 1 and 2 of DIO-SO sets the DI/O mode to Jumper Selectable Mode, while connecting pins 2 and 3 sets the DI/O mode to Software Programmable Mode. The default configuration is Jumper Selectable Mode.

Jumper	Jumper Selectable (Default)	Software Programmable	
DIO-SO	Jump 1 2 3 Soft	Jump 1 2 3 Soft	

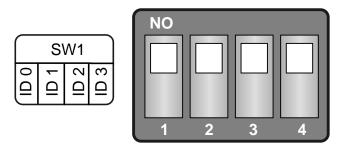
Software Programmable Mode:

Refer to "Section 6.3 Bar1: Digital I/O Registers" for details of how to configure Port A (PA) and Port B (PB) when the jumpers for DIO-S0 is set to Software Programmable Mode. The jumpers for DIO-S1 and DIO-S2 are not used when the DIO-S0 is set to Software Programmable Mode.

Jumper Selectable Mode:

DIO-S1 (Port A, PA) and DIO-S2 (Port B, PB) are used to configure the I/O ports as either Digital Input (connect pins 1 and 2) or Digital Output (connect pins 2 and 3), when the jumper for DIO-S0 is set to Jumper Selectable Mode. The default configuration is Digital Input.

	DIO-S0 is Jumper Selectable Mode		
Jumper	DI (Default)	DO	
DIO-S1 (Port A) DIO-S2 (Port B)	123	1 2 3	

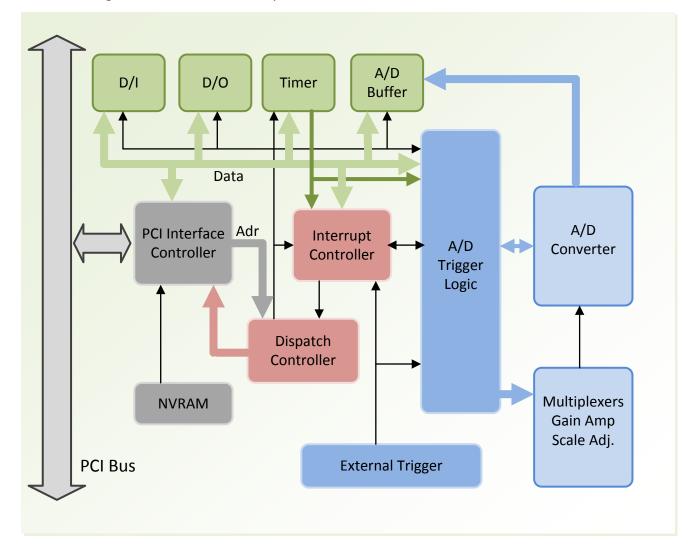

2.2.5 JP8 (Digital Input Pull-high/low)

Jumper JP8 is used to set the Digital Input to either Pull-high or Pull-low, which allows the status of the Digital Input to be predefined instead of remaining floating if the Digital Input channels are disconnected or interrupted. Connecting pins 1 and 2 will set the Digital Input to Pull-high. To set the Digital Input to Pull-low, pins 2 and 3 should be shorted. The default connected is Pull-low.

Jumper	Pull-low (Default)	Pull-high
JP8	GND 2 1 5 V	GND 3 2 1 5 V

2.3 Card ID Switch

PCI-822/826 Series cards include an onboard Card ID DIP Switch (SW1) that enables the card to be recognized via software if two or more PCI-822/826 Series cards are installed in the same computer. The default Card ID is 0x0 in hexadecimal format. For more detailed information regarding the positions of the SW1 DIP Switch for the different Card ID settings, refer to the table below.


(Default Settings)

Card ID (Hex)	1 ID0	2 ID1	3 ID2	4 ID3
(*) 0x0	ON	ON	ON	ON
0x1	OFF	ON	ON	ON
0x2	ON	OFF	ON	ON
0x3	OFF	OFF	ON	ON
0x4	ON	ON	OFF	ON
0x5	OFF	ON	OFF	ON
0x6	ON	OFF	OFF	ON
0x7	OFF	OFF	OFF	ON
0x8	ON	ON	ON	OFF
0x9	OFF	ON	ON	OFF
0xA	ON	OFF	ON	OFF
ОхВ	OFF	OFF	ON	OFF
0xC	ON	ON	OFF	OFF
0xD	OFF	ON	OFF	OFF
OxE	ON	OFF	OFF	OFF
0xF	OFF	OFF	OFF	OFF

(*) Default Settings; ON = 0; OFF = 1

2.4 Block Diagram

The following is an illustration of the System Function Block for PCI-822/826 Series cards:

2.5 Analog Input Signal Connections

PCI-822/826 Series cards can be used to measure either single-ended or differential type Analog Input signals. Although certain signals can be measured using either mode, other signals, however, can only be measured in one mode or the other. The most suitable mode for the measurement must be determined beforehand, and is totally dependent on the prevailing measurement conditions.

In general, there are four different methods that can be used for connecting Analog Input signals, as shown below in Figures 2.5-1 to 2.5-5. The connection method illustrated in Figure 2.5-1 is more suitable for grounding source Analog Input signals. The connection method depicted in Figure 2.5-3 is used to measure more channels than the method shown in Figure 2.5-1, but it is only suitable for large Analog Input signals. The connection method shown in Figure 2.5-4 is suitable for thermocouple input signals, while the connection method illustrated in Figure 2.5-5 is suitable for floating source Analog Input signals.

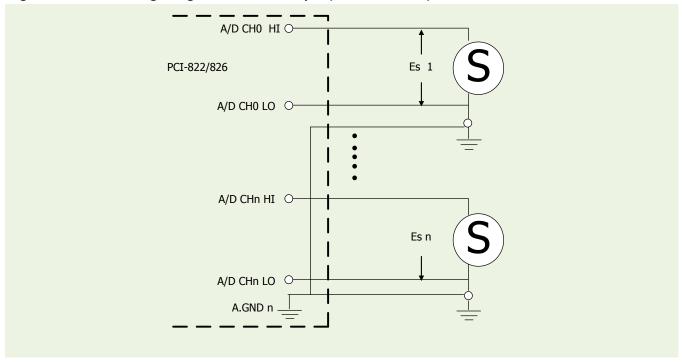
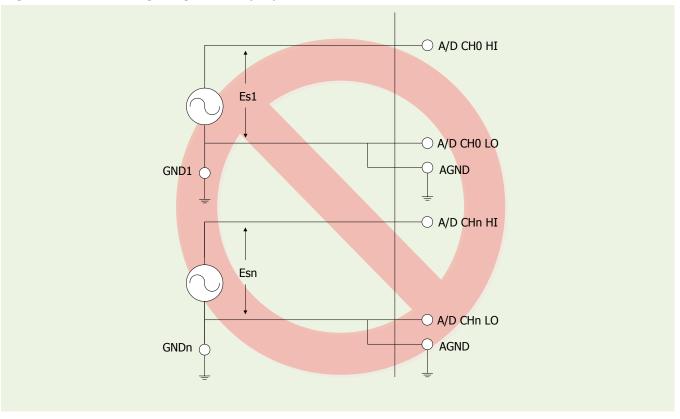
Important Note: For the method illustrated in Figure 2.5-4, the maximum allowable common mode voltage between the Analog Input source and the AGND pin is $70V_{p-p}$, so care must be taken to ensure that the input signal is below this level before continuing. If the common mode voltage is set to above $70V_{p-p}$, the input multiplexer will be permanently damaged.

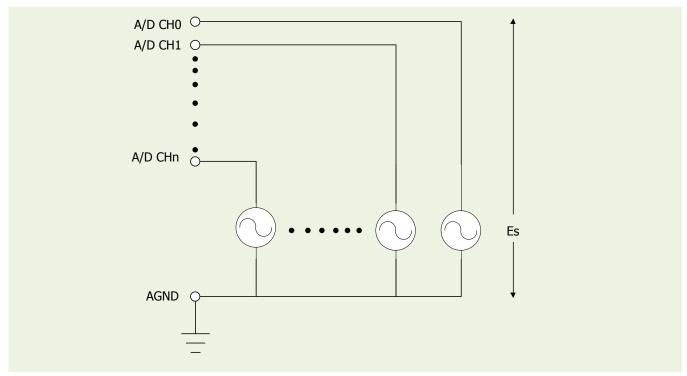
The easiest approach to selecting the most suitable configuration for the input signal connection is outlined below:

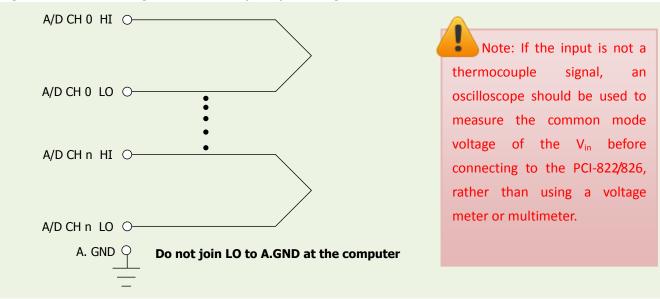
- 1. Grounding the source input signal → see Figure 2.5-1
- 2. Thermocouple input signal → see Figure 2.5-4
- 3. Floating source input signal → see Figure 2.5-5
- 4. If Vin > 1 V, and the gain is <=10 and more channels are needed \rightarrow see Figure 2.5-3
- 5. Current source input signal → see Figure 2.5-6

If the characteristics of the input signal are unknown or unclear, test the signal using the following procedure to determine the most suitable method:

- 1. Measure the signal using the connection illustrated in Figure 2.5-1 and record the result
- 2. Measure the signal using the connection illustrated in Figure 2.5-5 and record the result
- 3. Measure the signal using the connection illustrated in Figure 2.5-3 and record the result
- 4. Compare the three results and select the most suitable connection method


Figure 2.5-2: Connecting to a ground loop input (incorrect method)


User Manual, Ver. 1.4, Nov. 2015, PMH-024-13, Page: 17

PCI-82x Series Cards Multifunction Boards

Figure 2.5-4: Connecting to a thermocouple input configuration

<u>CAUTION</u>: The maximum allowable common mode voltage between the Analog Input source and the A.GND pin for the connection shown in **Figure 2.5-4**, is 70 V_{p-p} . Ensure that the input signal is below this value before making any connections. If the common mode voltage is above 70 V_{p-p} , the input multiplexer will be permanently damaged.

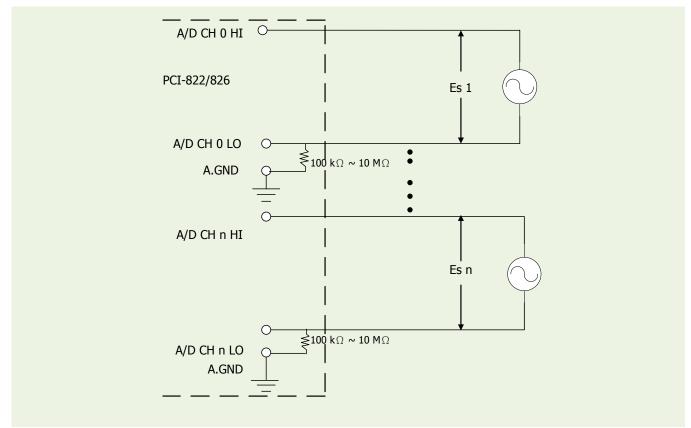
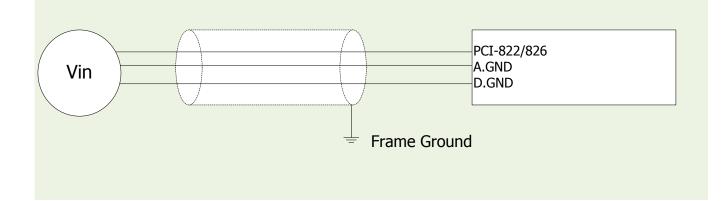



Figure 2.5-6: Connecting to a 4 ~ 20 mA Source


Example: A 20 mA source current through a 125 Ω resistor (e.g. 125 Ω , 0.1% DIP Resistors) between + and – terminals and the board will read a 2.5 V_{DC} voltage. You can use the **I = V/R** (Ohm's law) to calculate what value the source current should have.

Current (I) = Voltage (V) / Resistance (R)

= 2.5 V / 125 Ω = 0.02 A = 20 m

Signal Shielding

- The signal shielding for the connection methods illustrated in Figures 2.5-1 to 2.5-6 are the same
- Use a single-point connection to the frame ground, rather than the A.GND or the D.GND pins

2.6 Pin Assignments

The following is an overview of the pin assignments for PCI-822/826 Series cards. CON1 and CON2 relate to the Digital Input and Digital Output connectors, while CON3 is used for both single-ended and differential input.

Pin Assignment		Terminal No.		Pin Assignment		Pin Assign- ment	Terminal No.		Pin Assign- ment		
SE	DIFF				SE	DIFF	PB 0	01	00	02	PB 1
AI_0	AI_0+	01					PB 2	03	00	04	PB 3
AI_1	AI_1+	02	•	20	AI_16	AI_0-	PB 4	05	00	06	PB 5
AI_1 AI_2	AI_1+	03	•	21	AI_17	AI_1-	PB 6	07	၂၀၀	08	PB 7
				22	AI_18	AI_2-	PB 8	09	0 0	10	PB 9
AI_3	AI_3+	04	••	23	AI_19	AI_3-	PB 10	11		12	PB 11
AI_4	AI_4+	05	••	24	AI_20	AI_4-	PB 12	13		14	PB 13
AI_5	AI_5+	06	•	25	AI_21	AI_5-	PB 14 GND	15 17	00	16 18	PB 15 GND
AI_6	AI_6+	07	•	26	AI_22	AI_6-	+5 V	19	0 0	20	+12 V
AI_7	AI_7+	08	•	27	AI_23	AI_7-	+J V	19	00	20	+12 V
AI_8	AI_8+	09		28	AI_24	AI_8-		CON1			
AI_9	AI_9+	10	•	29	AI_25	AI_9-					
AI_10	AI_10+	11		30	AI_26	AI_10-	Pin	Terminal No. Pin			
AI_11	AI_11+	12	•	31	AI_20	AI_10	Assign- ment				Assign- ment
AI_12	AI_12+	13	• •		_	_	PA 0	01	00	02	PA 1
AI_13	AI_13+	14	• •	32	AI_28	AI_12-	PA 2	03	0 0	02	PA I PA 3
AI_14	AI_14+	15	• •	33	AI_29	AI_13-	PA 4	05	0 0	06	PA 5
AI_15	AI15+	16	••	34	AI_30	AI_14-	PA 6	07	0 0	08	PA 7
	GND	17	••	35	AI_31	AI_15-	PA 8	09	၂၀ ၀	10	PA 9
DA0 out		18	•	36		1 out	PA 10	10	0 0	12	PA 11
Ext_Trg 19		D.GND		PA 12	12	6 0	14	PA 13			
EX	ng	19					PA 14	14	00	16	PA 15
							GND	16	00	18	GND
							+5 V	18	0 0	20	+12 V
	CON3							CON2			

3 Hardware Installation

Note:

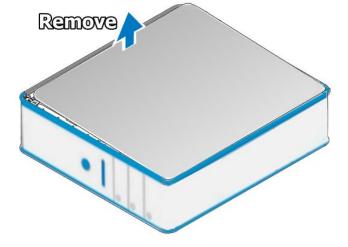
As certain operating systems, such as Windows 2000 and Windows XP may require the computer to be restarted after a new driver is installed, it is recommended that the driver is installed first, which will reduce the time required for installation.

To install your PCI-822/826 Series card, follow the procedure described below:

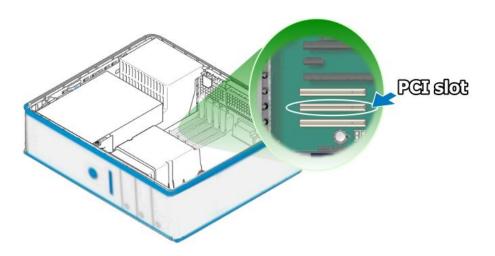
Step 1: Install the driver for the PCI-822/826 Series card on the computer.

For more detailed information about installing the driver for the PCI-822/826 Series card, refer to Chapter 4 Software Installation.

Step 2: Configure the Jumpers and the SW1 DIP Switch on the PCI-822/826 Series card depending on the required configuration.

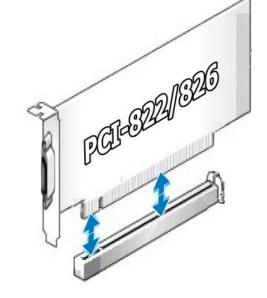


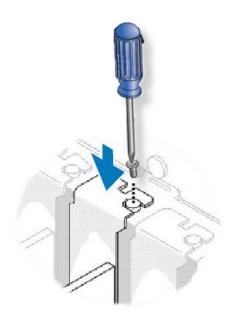
For more detailed information about the configuring the Jumpers and Card ID (SW1), refer to Section 2.2 Jumper Settings and Section 2.3 Card ID Switch.



Step 3: Correctly shut down and power off your computer, and then disconnect the power supply.

Step 5: Select a vacant PCI slot.

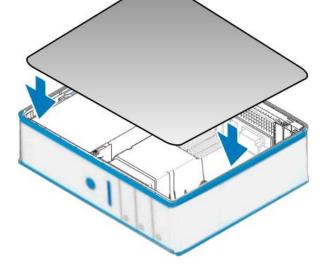



Step 6: Remove the screw holding the cover for the PCI slot in place and then remove the slot cover from the PC. Ensure that you do not misplace the screw.

Step 7: Remove the connector cover from the PCI-822/826 Series card.

(DDDD)

Step 8: Align the contacts of the PCI card with the open slot on the motherboard and then carefully insert the PCI-822/826 Series card into the PCI slot by gently pushing down on both sides of the card until it slides into the slot.



Step 9: Secure the PCI-822/826 Series card in place using the retaining screw that was removed in step 5.

Confirm that the PCI-822/826 series card is correctly mounted in the motherboard.

Step 10: Replace cover for the computer and then reconnect the power supply and any other cables.

Step 11: Switch on the power to the computer.

Once the computer reboots, follow any messages that may be displayed to complete the Plug and Play installation procedure. Refer to **Chapter 4 Software Installation** for more information.

4 Software Installation

This chapter provides a detailed description of the process for installing the driver for the PCI-822/826 Series card as well as how to verify whether the PCI-822/826 Series card was properly installed. PCI-822/826 Series cards can be used on DOS, Linux and Windows 2000 and 32-/64-bit version of Windows XP/2003/Vista/7/8 based systems, and the drivers are fully Plug and Play compliant for easy installation.

4.1 Obtaining the Driver Installation Package

The driver installation package for PCI-822/826 Series cards can be found on the companion CD-ROM, or can be obtained from the ICP DAS FTP web site. Install the appropriate driver for the operating system. The location and website addresses for the installation package are indicated below.

Operating System	Windows 2000 < 32/64-bit Windows XP < 32/64-bit Windows 2003 < 32/64-bit Windows Vista < 32/64-bit Windows 7 < 32/64-bit Windows 2008 and 32/64-bit Windows 8
Driver Name	UniDAQ Driver/SDK (unidaq_win_setup_xxxx.exe)
CD-ROM	CD:\\ NAPDOS\PCI\UniDAQ\DLL\Driver\
Website	http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/unidaq/dll/driver/
Installation Procedure	Please follow the following steps to setup software: Step 1: Double click the UniDAQ_Win_Steupxxx.exe to setup it. Step 2: When the Setup Wizard screen is displayed, click the <u>Next</u> > button. Step 3: When the Information screen is displayed, click the <u>Next</u> > button.

UniDAO Driver/SDK

Т

	Step 4: Select the folder where the drivers are to install. The default path is C:\ICPDAS\UniDAQ . But if you wish to install the drivers to a different location , click the "Browse" button and select the relevant folder and then click the <u>Mext></u> button.
	Step 5: When the Select Components screen is displayed, check PCI-P16R16 series board on the list, then click the <u>N</u> ext> button.
	Step 6: When the Select Additional Tasks screen is displayed, click the <u>Next></u> button.
Installation Procedure	Step 7: When the Download Information screen is displayed, click the <u>N</u> ext> button.
	Step 8: Select the item "Yes, restart the computer now" , press the <u>F</u> inish button. System will reboot.
	For more detailed information about how to install the UniDAQ driver, refer to "Section 2.2 Install UniDAQ Driver DLL" of the UniDAQ Software Manual, which can be found in the \NAPDOS\PCI\UniDAQ\Manual\ folder on the companion CD, or can be downloaded from: <u>http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/unidaq/manual/</u>

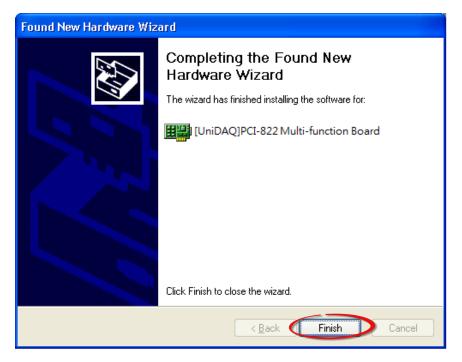
Linux Driver

OS	Linux Kernel 2.4.x/2.6.x/3.12.x	
Driver Name	Ixpci.tar.gz	
CD-ROM	CD:\\ NAPDOS\Linux\	
Website	http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/linux/	
Installation Procedure	For more detailed information about how to install the Linux driver, refer to the readme.txt file that can be found in the \NAPDOS\Linux\ folder on the companion CD.	

4.2 Plug and Play Driver Installation

Step 1: Correctly shut down and power off your computer and disconnect the power supply, and then install the PCI-822/826 Series board into the computer.

For detailed information about the hardware installation of the PCI-822/826 Series board, refer to Chapter 3 Hardware Installation.


Step 2: Power on the computer and complete the Plug and Play installation.

Note: More recent operating systems, such as Windows 7/8 will automatically detect the new hardware and install the necessary drivers etc., so Steps 3 to 5 can be skipped.

Step 3: Select "Install the software automatically [Recommended]" and click the "Next>" button.

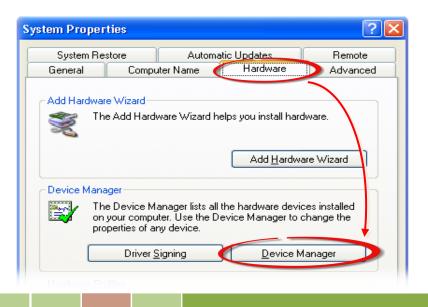
Step 4: Click the "Finish" button.

Step 5: Windows pops up **"Found New Hardware"** dialog box again.

4.3 Verifying the Installation

To verify that the driver was correctly installed, use the Windows **Device Manager** to view and update the device drivers installed on the computer, and to ensure that the hardware is operating correctly. The following is a description of how access the Device Manager in each of the major versions of Windows. Refer to the appropriate description for the specific operating system to verify the installation.

4.3.1 Accessing Windows Device Manager


Windows 95/98/ME

Step 1: Either right-click the **"My Computer"** icon on the desktop and then click **"Properties"**, or open the **"Control Panel"** and double-click the **"System"** icon to open the **System Properties** dialog box.

Step 2: In the System Properties dialog box, click the "Device Manager" tab.

Windows 2000/XP

- Step 1: Click the "Start" button and then point to "Settings" and click "Control Panel".Double-click the "System" icon to open the "System Properties" dialog box.
- Step 2: Click the "Hardware" tab and then click the "Device Manager" button.

Windows Server 2003

Step 1: Click the **"Start"** button and point to **"Administrative Tools"**, and then click the **"Computer Management"** option.

Step 2: Expand the "System Tools" item in the console tree, click "Device Manager".

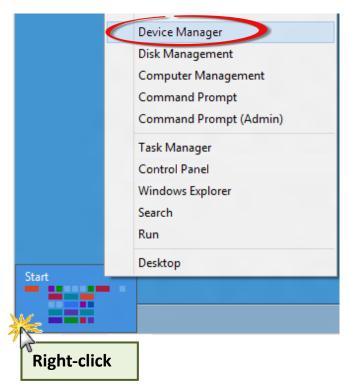
Windows Vista/7

Step 1: Click the "Start" button, and then click "Control Panel".
Step 2: Click the "System and Maintenance", and then click "Device Manager".

Alternatively,

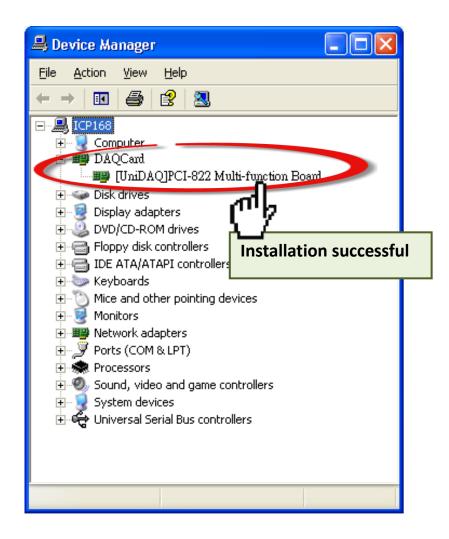
Step 1: Click the "Start" button.Step 2: In the Search field, typeDevice Manager and then pressEnter.

Control Panel (3)
🚔 Device Manager
low devices and printers
🚔 Update device drivers
₽ See more results
device manager × Shut down +
👧 📋 🧭 🖸 🥥


Note that Administrator privileges are required for this operation. If you are prompted for an administrator password or confirmation, enter the password or provide confirmation by clicking the "Yes" button in the User Account Control message.

Microsoft Windows 8

Step 1: To display the **Start screen icon** from the desktop view, hover the mouse cursor over the **bottom-left corner** of screen.


Step 2: Right-click the Start screen icon then click "Device Manager".

Alternatively, press [Windows Key] +[X] to open the Start Menu, and then select Device Manager from the options list.

4.3.2 Check the Installation

Check that the PCI-822/826 Series card is correctly listed in the Device Manager, as illustrated below.

5 Testing the PCI-822/826 Series Card

This chapter provides detailed information about the **"Self-Test"** process, which is used to confirm that PCI-822/826 Series card is operating correctly. Before beginning the **"Self-Test"** process, ensure that both the hardware and driver installation procedures are fully completed. For detailed information about the hardware and driver installation, refer to **Chapter 3 Hardware Installation** and **Chapter 4 Software Installation**.

5.1 Self-Test Wiring

The following is a description of how to configure the wiring in order to perform the "Self-Test" procedures for the Digital Input and Digital Output. Refer to the appropriate descriptions for PCI-822/826 Series cards in Sections 5.1.1 to 5.1.3 for more detailed information.

5.1.1 Digital Input/Output Test Wiring

Preparing the device:
 Before beginning the "Self-Test" procedure, ensure that the following items are available:
 A CA-2002 cable
 (Website: <u>http://www.icpdas.com/products/Accessories/cable/cable_selection.htm</u>)

Step 1: Ensure that the **JP4 jumper (DIO-S0)** on the PCI-822/826 card is set to the **"soft" position**. Refer to **Section 2.2.4 JP4 Digital I/O Mode** for more detailed information.

Note: The direction of the DI/O ports are controlled by software when the **"software Program Mode"** option is selected.

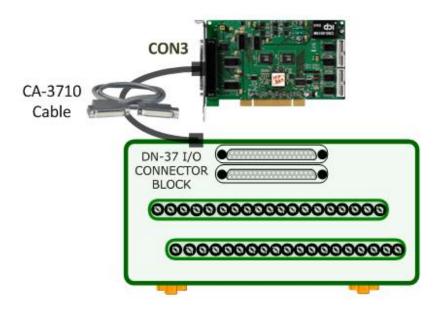
Step 2: Use the CA-2002 cable to connect the CON1 connector to the CON2 connector on the PCI-822/826 Series card.

5.1.2 Analog Input/Output Test Wiring

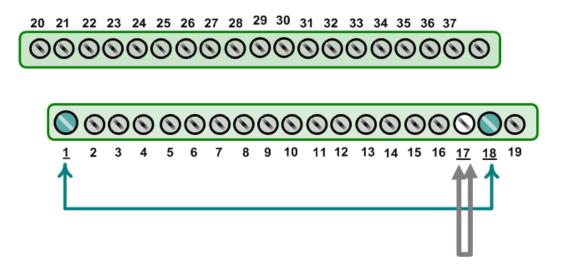
Preparing the device:

Before beginning the "Self-Test" procedure, ensure that the following items are available:

A CA-3710 cable


(Website: http://www.icpdas.com/products/Accessories/cable/cable_selection.htm)

☑ A DN-37 (optional) terminal board


(Website:

http://www.icpdas.com/root/product/solutions/pc_based_io_board/daughter_boards/dn-37.html)

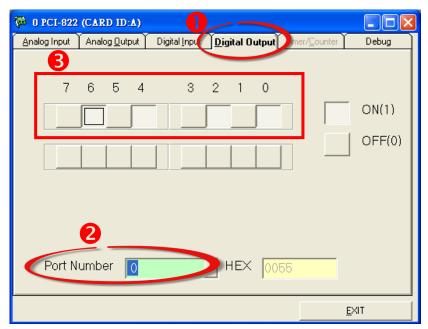
Step 1: Use the DN-37 (optional) to connect the CON3 on the PCI-822/826 card.

Step 2: Set the JP1 jumper (Analog Input Type) on the PCI-822/826 Series card to Single-ended mode (see <u>Section 2.2.1</u> for more details), and then connect the AO0_Out (Pin18) to the AIO (Pin1), and connect the A.GND pin (Pin17) to the A.GND pin (Pin17).

5.2 Execute the Test Program


After installation, the UniDAQ Utility will be located in the default folder (C:\ICPDAS\UniDAq\Driver\). Use the procedure described below to perform the "Self-Test".

Step 1: Click the "Start" button point to "All Programs" and then click the "ICPDAS" folder. Point to "UniDAQ Development Kits" and then click the "UniDAQ Utility" to execute the UniDAQ Utility Program.


Step 2: Confirm the PCI-822/826 Series card has been successfully installed in the Host system. Note that the device numbers start from 0.

Step 3: Click the "<u>T</u>EST" button to start the test.


Step 4: Get DIO function test result.

- 1. Click the **"Digital Output"** tab.
- 2. Select the "Port0" from the "Port Number" drop-down options.
- 3. Check channels 0, 2, 4 and 6.

User Manual, Ver. 1.4, Nov. 2015, PMH-024-13, Page: 38

- 4. Click the "Digital Input" tab.
- 5. Select the **"Port1"** from the **"Port Number"** drop-down options.
- 6. The corresponding DI become **red** for channel 0, 2, 4, 6 of DO is **ON**.

Step 3: Check the results of the A/D and D/A functions test.

- 1. Click the **"Analog Output"** tab.
- 2. In the Voltage Output section, select the **"0"** from the **"Channel"** drop-down menu.
- 3. Select "Bipolar +/- 10 V" from the "Range" drop-down menu.
- 4. Enter a "voltage value (e.g., 3)" in the "Voltage(V)" field.
- 5. Click the "OUTPUT" button.

Analog Output Digital Input Digital Output Time	
Voltade Outbut Channel Range 3 Voltage(V 0 2 I 3:Bipolar +/- 10V 3 4	
Current Outbut Channel Range Current(mA 0 • Select • 2.5	; [],
	<u>e</u> xit

Note:

The Analog Output Range setting states depend on the JP3 and JP6 setting on the PCI-822/826 card. Refer to <u>Section 2.2.2 JP6/JP7 Analog</u> <u>Output Range</u> and <u>Section 2.2.3</u> <u>JP3/JP5 Analog Output Type</u> for more detailed information.

- 6. Click the **"Analog Input"** tab.
- 7. Confirm that the configuration settings are correct.
- 8. Click the "<u>Start</u>" button to start the test.

🦗 O PC	CI-822 (CARE	ID:∆)					
Analog	Input Analog	0utput	Digital Input	<u>D</u> igital	Output]	Timer/ <u>C</u> ounter	Debug
Ch	Voltage(V)	Ch	Voltage(V)	Ch	Voltage	(V) Ch	Voltage(V)
	0	8	0	16		24	0
1	0	9	0	17	0	25	0
2	0	10	0	18	0	26	0
3	0	11	0	19	0	27	0
4	0	12	0	20	0	28	0
5	0	13	0	21	0	29	0
6	0	14	0	22	0	30	0
7	0	15	0	23	0	31	0
-Settin	a			,	_	— ́ Г	
Card		(JPx=20)V) Gain	7	•	- HEX	8 Start
Rang	e 00:Bipola	ar +/- 10	V 🗸 Sar	nple Ra	ate 100) <mark>÷</mark> Hz	Start_
	,				,		

9. Check that the Analog Input value for Channel 0 is the same as the voltage value entered in Step 3. The values for other channels will be a floating number.

🖗 0 PCI-8	22 (CARD	ID:A)							3
<u>A</u> nalog Inp	ut Analog j	<u>O</u> utput	Digital <u>I</u> nput	Digita	al Output	Timer	/ <u>C</u> ounter	Debug]
Ch 9 V	/oltage(V)	Ch	Voltage(V)	Ch	Voltage	(V)	Ch	Voltage(V)	
0 2.	9986	8	0.74418	16	2.998	6	24	0.75891	
1 2.	61059	9	0.66559	17	2.640	06	25	0.67542	
2 2.	05066	10	0.59683	18	2.114	52	26	0.60174	
3 1.	77562	11	0.57718	19	1.81		27	0.56736	
4 1.	39742	12	0.5428	20	1.4318	3	28	0.53298	4
5 1.	18131	13	0.53789	21	1.220	6	29	0.58807	
6 0.	99958	14	0.5428	22	1.024	14	30	0.52807	
7 0.	89153	15	0.56736	23	0.9160)9	31	0.55	Complete
Setting Card Typ Range	0:Low(00:Bipola			nple R	, ך ate 100	HE	Hz	Stop	
								<u>e</u> xit]

6 I/O Control Registers

6.1 Determining the I/O Address

During the power-on stage, the Plug and Play BIOS will assign an appropriate I/O address to each PCI-822/826 Series card installed in the system. Each PCI-822/826 Series card includes four fixed ID numbers that are used to identify the card, and are indicated below:

Model	PCI-822LU	PCI-826LU
Vendor ID	0x10B5	0xE10B5
Device ID	0x3001	0x3001
Sub-Vendor ID	0x2129	0x2129
Sub-Device ID	0x0822	0x0826

The following functions are provided for the PCI-822/826 card:

1. PCI82x_DriverInit(&wTotalBoards)

This function is used to detect how many PCI-822 and/or PCI-826 cards are installed in the system, and also records the I/O resource information for the card(s) in the library. The function is implemented based on the PCI Plug and Play mechanism.

For example:

- wTotalBoards = 1 \rightarrow there is only one PCI-822/826 Series card installed in the system
- wTotalBoards = 2 \rightarrow there are two PCI-822/826 Series cards installed in the system

2. PCI82X_GetConfigAddressSpace(wBoardNo, *wBaseAddr, *wBaseDIO, *wBaseDA, *wBaseAD, *wIrqNo, *wModeID, *wCardID)

This function is used to retrieve the I/O resource information for the PCI-822/826 Series cards installed in the system. The application will then be able to directly control all the functions related to the PCI-822/826 Series cards.

- **wBoardNo = 0 to N** \rightarrow A total of N+1 PCI-822/826 Series cards are installed in the system
- wBaseAddr, wBaseDIO, wBaseDA, wBaseDA → The base address of the PCI-822/826 card
- wirq \rightarrow The IRQ channel number allocated for the PCI-822/826 card

The following is a sample of the source code:

```
/* Step1: Detect all PCI-822&PCI-826 cards first */
wRetVal=PCI82X_DriverInit(&wTotalBoards);
printf("Threr are %d PCI-822&PCI-826 Cards in this PC\n",wBoards);
/* Step2: Save resources of all PCI-822&PCI-826 cards installed in this PC */
for (i=0; i<wBoards; i++)
   Ł
    PCI82X_GetConfigAddressSpace(wBoardNo,&wBaseAddr,&wBaseDIO,
                                    &wBaseDA,&wBaseAD,&wIrqNo,&wModeID,&wCardID);
   printf("\nCard%d: wBase=%x, wIrq=%x, wBaseDIO=%x"
   , i,wBaseAddr,wIrq,wBaseDIO);
   wConfigSpace[i][0]=wBaseAddress; // save all resource of this card
   wConfigSpace[i][1]=wBaseDIO; // save all resource of this card
   wConfigSpace[i][2]=wBaseDA;
                                     // save all resource of this card
   wConfigSpace[i][3]=wBaseAD;
                                      // save all resource of this card
   }
/* Step3: Control the PCI-822&PCI-826 directly */
  outpw(wBaseDIO+0x0,wDoValue);
                                           // control the D/O states of card_0
  wDiValue=inpw(wBaseDIO+0x0);
                                            // read the D/I states of card 0
  outpw(wBaseDIO+0x0,wDoValue);
                                           // control the D/O states of card_1
  wDiValue=inpw(wBaseDIO+0x0);
                                           // read the D/I states of card_1
```

6.2 I/O Address Mapping

The address of each register can be determined by simply adding the offset value to the base address of the corresponding section. More detailed descriptions of each register can be found in the following sections and also in the software manual. The following is an overview of the registers for PCI-822/826 Series cards and their functions:

Bar No.	Offset	Register Func	tion Description
bar No.	Onset	Read	Write
	0h	Reads the Digital I/O for PortA	Writes the Digital I/O to PortA
1	4h	Reads the Digital I/O for Port B	Writes the Digital I/O to PortB
(DI/O)	8h	Reads from EEPROM	Writes to EEPROM
(-,, -,	Ch	Reads the status of the DI/O Jumper and Card ID	Sets the configuration for Port A and Port B
2	0h	Reads the D/A Data	Writes the D/A Data
2 (D/A)	4h	Reads the D/A control settings	Configures the D/A control settings
	8h	N/A	Enables/Disables the D/A Channel
	0h	Reads the Analog Input configuration	Configures the A/D polling control settings
	4h	Reads the A/D data	Sets the A/D trigger for polling mode
	8h	Reads the Sampling Rate	Sets the Sampling Rate
3	Ch	Reads the Magic Scan counter value	Sets the Magic Scan counter value
(A/D)	10h	Reads the A/D pacer control configuration	Configures the A/D pacer control settings
())	14h	Reads the Base Frequency/Magic Scan control configuration	Configures the Magic scan control/Base Frequency settings
	18h	Clears the interrupts	Starts/stops Magic Scan
	1Ch	Reads the status of the interrupts	Configures the interrupt control settings

Note: The length of the register is 16-bit.

6.3 Bar 1: Digital I/O Registers

6.3.1 Read/Write 16-bit Data for Port A/B

(Read/Write): wBase+0+0x00

Read/Write 16-bit data for Port A

(Read/Write): wBase+0+0x04

Read/Write 16-bit data for Port B

Bit	F	E	D	С	В	А	9	8	7	6	5	4	3	2	1	0
Data	DF	DE	DD	DC	DB	DA	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

This register provides the function for configuring the Digital Input/Output ports on the PCI-822/826 Series card. The I/O ports can be configured as either DI or a DO port, each port can be read/written by accessing its data register. The I/O ports on PCI-822/826 Series cards are 16-bit.

6.3.2 Read/Write I/O Port Selection

(Read/Write): wBase+0+0x0C I/O Port Selection

Bit	1	0
Data	Port B	Port A

This register provides the function for configuring the mode for the Digital Input/Output ports on the PCI-822/826 Series card. Each I/O port can be programmed as either a Digital Input or Digital Output. Note that all ports are initialized as Digital Input when the Host system is first turned on and that the jumpers for DIO-S2 of JP4 must be set to "Software Programmable Mode". See Section 2.2.4 for more details.

Port $x = 1 \rightarrow$ The port is configured used as a Digital Output port Port $x = 0 \rightarrow$ The port is configured used as a Digital Input port

6.3.3 Read the Card ID (SW1) and the DI/O Jumper (JP4) Settings

> (Read)wBase+0x0C Read the Card ID (SW1) and the DI/O Jumper (JP4) Settings

Bit	F	E	D	С	В	А	9	8	7	6	5	4	3	2	1	0
Data	х	х	х	х	х	SO	S1	S2	х	х	х	х	ID3	ID2	ID1	ID0

This register is used to read the Card ID (SW1) and the DIO Jumper (JP4) settings on the PCI-822/826 Series card.

The following is an example of how to read the 4-bit Card ID:

wCardID = inportb(wBaseDIO+0x0C)&0xF;	/* Read the Card ID
wJumper=(inportb(wBaseDIO+0xC)>>8)&0x7;	/* Reads the DI/O Jumper (JP4) settings

	DI/O Jumper	(JP4) Settings	DIO Port Configuration			
wJumper	SO	S1	S2	JP4 DIO-S0	PA	РВ
0x0	0	х	х	Soft	х	х
0x4	1	0	0	Jump	DI	DI
0x5	1	0	1	Jump	DI	DO
0x6	1	1	0	Jump	DO	DI
0x7	1	1	1	Jump	DO	DO

6.4 Bar 2: Analog Output Registers

6.4.1 Read/Write 16-bit D/A Data

(Read/Write)wBase+0x0 Read/Write 16-bit D/A Data

Bit	F	E	D	С	В	А	9	8	7	6	5	4	3	2	1	0
Data	DF	DE	DD	DC	DB	DA	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

Each D/A converter provide 2-channel Analog Output. Refer to <u>Section 6.4.2</u> below for details of how to select the D/A channel before writing data to the D/A converter.

6.4.2 Read/Write Analog Output Channel Selection

(Read/Write)wBase+0x04 Read/Write Analog Output Channel Selection

Bit	1	0
Data	M1	M0

Before D/A data can be written, a D/A channel must be selected as the output. The following table illustrates how to select the D/A channel:

D/A Channel Selection:

M1	MO	D/A Channel
0	0	Channel 0
1	1	Channel 1

6.4.3 Enable/Disable an Analog Output Channel

(Write)wBase+0x08 Enable/Disable an Analog Output Channel

Bit	1	0
Data	CH1	CH2

D/A channel must be enabled or disabled before the voltage can be output to the channel. The D/A channels are allocated as follows:

CH x = 1 \rightarrow Enable the channel CH x = 0 \rightarrow Disable the channel

The following is an example of how to enable the Analog Output Channel:

```
//Set the AO Mode
outpw(wBaseDA+0x04,(WORD)(((wChannel/2)<<2)|(((wChannel%2)<<1)|(wChannel%2))));
//Write data to the D/A Port
outpw(wBaseDA +0x00,(WORD)(wValue&0xFFFF));
//Enable the D/A Port (only for the first D/A Output)
if((inpw(wBaseDA+0x08)&(0x1<<wChannel))==0)
{
outpw(wBaseDA+0x08,(WORD)(inpw((WORD)( wBaseDA+0x08))|(0x1<<wChannel)));
}
```

6.5 Bar 3: Analog Input Registers

6.5.1 Read/Write the A/D Polling Configuration

(Read/Write)wBase+0x0 Read/Write the A/D Polling Configuration

Bit	F	E	D	С	В	А	9	8	7	6	5	4	3	2	1	0
Data	FO	х	х	х	х	х	x	х	G1	G0	M5	M4	M3	M2	M1	M0

This register is used to read/set the Analog Input configuration for polling mode (software trigger). The configuration parameters include the Gain code, the Mode (single-ended or differential), and the channel number.

Clearing the FIFO (Bit F)

Write a value of 1 to F0 to clear the FIFO Data. The status of the FIFO will then be changed to empty.

Analog Input Gain Control (Polling Mode) (Bits 6 and 7)

Gain Control:

Bits 6 and 7 are used to configure the Gain Control mode for the Analog Input channels, as indicated below.

G1	G0	Gain	Al Range
0	0	0	± 10.00 V
0	1	1	± 5.00 V
1	0	2	± 2.50 V
1	1	3	± 1.25 V

Note: Only the values for G1 and G0 (Bits 6 and 7) are used for the Gain Control code.

Analog Input Channel Control (Polling Mode) (Bits 0 to 5)

Single-ended/Differential Analog Input Selection:

Bits 4 and 5 are used to configure the control (Polling) mode for the Analog Input channels, as indicated below.

M5	M4	Analog Input
0	0	х
0	1	Single-ended Input Channels 0-15
1	0	Single-ended Input Channels 16-31
1	1	Differential Input Channels 0-15

Analog Input Channel Selection:

Bits 0 to 3 are used to configure the input mode for the Analog Input channels, as indicated below.

M3	M2	M1	M0	(M5, M4)		
				(0,1)	(1,0)	(1,1)
0	0	0	0	SE Ch0	SE Ch16	DIFF Ch0
0	0	0	1	SE Ch1	SE Ch17	DIFF Ch1
0	0	1	0	SE Ch2	SE Ch18	DIFF Ch2
0	0	1	1	SE Ch3	SE Ch19	DIFF Ch3
0	1	0	0	SE Ch4	SE Ch20	DIFF Ch4
0	1	0	1	SE Ch5	SE Ch21	DIFF Ch5
0	1	1	0	SE Ch6	SE Ch22	DIFF Ch6
0	1	1	1	SE Ch7	SE Ch23	DIFF Ch7
1	0	0	0	SE Ch8	SE Ch24	DIFF Ch8
1	0	0	1	SE Ch9	SE Ch25	DIFF Ch9
1	0	1	0	SE Ch10	SE Ch26	DIFF Ch10
1	0	1	1	SE Ch11	SE Ch27	DIFF Ch11
1	1	0	0	SE Ch12	SE Ch28	DIFF Ch12
1	1	0	1	SE Ch13	SE Ch29	DIFF Ch13
1	1	1	0	SE Ch14	SE Ch30	DIFF Ch14
1	1	1	1	SE Ch15	SE Ch31	DIFF Ch15

The following is an example of how to enable the Analog Output Channel:

outpw(wBaseAD+0x0,0x8032);

//Software trigger mode. Sets the DIFF Input channel 2 and clears the FIFO buffer

6.5.2 Write the AI Software Trigger

> (Write)wBase+0x04 Write the AI Software Trigger

This register is used to trigger the A/D Conversion and then save the data to the FIFO buffer.

6.5.3 Read the FIFO Data

(Read)wBase+0x04 Read the FIFO Data

This register is used to read Analog Input Data from the FIFO buffer.

6.5.4 Read/Write AI Pacer Sampling Rate

- (Read/Write)wBase+0x8
- Read/Write the AI Pacer Sampling Rate

Bit	F	E	D	С	В	А	9	8	7	6	5	4	3	2	1	0
Data	CF	CE	CD	СС	СВ	CA	C9	C8	C7	C6	C5	C4	C3	C2	C1	C0

This register is used to set the internal pacer clock and then start the Analog Input in Pacer Trigger mode. The base frequency is set using the register offset 14H.The default clock value is 20 MHz.

The Sampling Rate = Base Frequency / Data

The following is an example of how to enable the Analog Output Channel:

outpw(wBase+0x14,0x0001);	//Sets the Base frequency to 8 MHz
outpw(wBase+0x8,800);	//Pacer Clock = 8 MHz / 800 = 10 KHz

6.5.5 Read/Write MagicScan Counter Value

Write/Read)wBase+0x0C Read/Write MagicScan Counter Value

This register is used to set/read the sampling value for MagicScan mode. The maximum value is 5000.

6.5.6 Write AI Pacer Configuration

(Write)wBase+0x10 Write the AI Pacer Configuration

Bit	F	E	D	С	В	А	9	8	7	6	5	4	3	2	1	0
Data	FO	S4	S3	S2	S1	SO	х	х	G1	G0	M5	M4	M3	M2	M1	M0

This register is used to set/read the Analog Input configuration for Pacer mode. The configuration parameters include the Gain code, the Mode (single-ended or differential), and the channel number.

Clearing the FIFO(Bit F)

Write a value of 1 to F0 to clear the FIFO Data. The status of the FIFO will then be changed to empty.

Scan Channel Sequence Control (Bits A to E)

The following is an example of how to control the Scan Channel Sequence:

wChannels = 4	
outpw(wBase+0x14,(0x0001 (wChannels-1)<<3)); //Set the Base Frequency and Total Scan Channels	5
outpw(wBase +0x08,100); //Set the Sampling Rate	
outpw(wBase+0x10,0x8032 (0<<10)); //Set the first channel number to 2,	
outpw(wBase+0x10,0x8030 (1<<10)); //Set the second channel number to 0,	
outpw(wBase+0x10,0x8037 (2<<10)); //Set the third channel number to 7,	
outpw(wBase+0x10,0x8034 (3<<10)); //Set the four channel number to 4,	
СН2 СН0 СН7 СН4	

Analog Input Gain Control (Pacer Mode) (Bits 6 and 7)

Gain Control:

Bits 6 and 7 are used to configure the Gain Control mode for the Analog Input channels, as indicated below.

G1	G0	Gain	AI Range
0	0	0	± 10.00 V
0	1	1	± 5.00 V
1	0	2	± 2.50 V
1	1	3	± 1.25 V

Note: Only the values for G1 and G0 (Bits 6 and 7) are used for the gain control code.

Analog Input Channel Control (Pacer Mode) (Bits 0 to 5)

Single-ended/Differential Analog Input Selection:

Bits 4 and 5 are used to configure the control (Pacer) mode for the Analog Input channels, as indicated below.

M5	M4	Analog Input
0	0	x
0	1	Single-ended Input Channel 0-15
1	0	Single-ended Input Channel 16-31
1	1	Differential Input Channel 0-15

Analog Input Channel Selection:

Bits 0 to 3 are used to configure the input mode for the Analog Input channels, as indicated below.

M3	M2	M1	M0	(M5, M4)		
				(0,1)	(1,0)	(1,1)
0	0	0	0	SE Ch0	SE Ch16	DIFF Ch0
0	0	0	1	SE Ch1	SE Ch17	DIFF Ch1
0	0	1	0	SE Ch2	SE Ch18	DIFF Ch2
0	0	1	1	SE Ch3	SE Ch19	DIFF Ch3
0	1	0	0	SE Ch4	SE Ch20	DIFF Ch4
0	1	0	1	SE Ch5	SE Ch21	DIFF Ch5
0	1	1	0	SE Ch6	SE Ch22	DIFF Ch6
0	1	1	1	SE Ch7	SE Ch23	DIFF Ch7

1	0	0	0	SE Ch8	SE Ch24	DIFF Ch8	
1	0	0	1	SE Ch9	SE Ch25	DIFF Ch9	
1	0	1	0	SE Ch10	SE Ch26	DIFF Ch10	
1	0	1	1	SE Ch11	SE Ch27	DIFF Ch11	
1	1	0	0	SE Ch12	SE Ch28	DIFF Ch12	
1	1	0	1	SE Ch13	SE Ch29	DIFF Ch13	
1	1	1	0	SE Ch14	SE Ch30	DIFF Ch14	
1	1	1	1	SE Ch15	SE Ch31	DIFF Ch15	

6.5.7 Read the Status of the FIFO/JP1/ADC

(Read)wBase+0x10 Read the Status of the FIFO/JP1/ADC

Bit	F	E	D	С	В	А	9	8	7	6	5	4	3	2	1	0
Data	FF	FH	Fe	A0	D0	х	х	х	х	х	х	х	х	х	х	х

This register is used to read the current status of the FIFO, the JP1 Jumper and the A/D Conversion. Refer to the following table for details:

Data	Read Value	
Data	0	1
D0	JP1 is set to Differential mode	JP1 is set to Single-ended mode
A0	The ADC is Ready	The ADC is Busy
FF	The FIFO is Full	The FIFO isn't Full
FH	The FIFO is Half Full	The FIFO isn't Half Full
FE	The FIFO is Empty	The FIFO isn't Empty

6.5.8 Read/Write the Base Frequency and the MagicScan Control Settings

(Read/Write)wBase+0x14 Read/Write the Base Frequency and the MagicScan Control Settings

Bit	F	E	D	С	В	А	9	8	7	6	5	4	3	2	1	0
Data	EO	х	х	х	CK3	CK2	CK1	СКО	S4	S3	S2	S1	SO	M2	M1	M0

This register is used to set/read the trigger edge settings, the base frequency, the MagicScan mode and the total number of channels to be scanned.

Note that Bits C to E are reserved.

External Trigger Edge Settings (Bit F)

Bit F used to configure the edge settings for the external trigger source, as indicated below.

EO	Trigger Edge
0	Failing Edge
1	Rising Edge

Base Frequency Settings (Bits 8 to B)

Bits 8 to B are used to configure the Base frequency settings, as indicated below.

СКЗ	СК2	CK1	СКО	Base Frequency
0	0	0	0	8 MHz
0	0	0	1	4 MHz
0	0	1	0	2 MHz
0	0	1	1	1 MHz
0	1	0	0	500 kHz
0	1	0	1	250 kHz
0	1	1	0	125 kHz
0	1	1	1	62.5 kHz

Total Number of Channels to be Scanned for MagicScan (Bits 3 to 7)

Bits 3 to 7 are used to set the total number of channels to be scanned using the MagicScan function (multi-channel scan). Set "0" to scan a single channel, set "1" to scan two channels. The maximum number of channels that can be scanned is 31.

MagicScan Mode Settings (Bits 0 to 2)

Bits 0 to 2 are used to set the MagicScan mode.

M2	M1	M0	Mode
0	0	0	Polling
0	0	1	Pacer
0	1	0	Pacer and Down Counter
0	1	1	Post Trigger Down Counter
1	0	0	Middle Trigger Down Counter
1	0	1	Pre Trigger Down Counter

6.5.9 Start/Stop MagicScan

(Write)wBase+0x18 Start/Stop MagicScan

Bit	F	E	D	С	В	А	9	8	7	6	5	4	3	2	1	0
Data	Start	Stop	х	х	х	х	х	х	х	х	х	х	х	х	х	х

This register is used to start or stop the AI Pacer or the MagicScan function, as indicated below.

Bit F	1	Enable Pacer START
	0	Disable Pacer START
	1	Enable Pacer STOP
Bit E	0	Disable Pacer STOP

6.5.10 Clear the Interrupt and External Trigger

(Read)wBase+0x18 Clear the Interrupt and External Trigger

This register is used to clear the interrupt and the external trigger.

6.5.11 Read/Write the Interrupt Control/Status

(Read/Write)wBase+0x1C Read/Write the Interrupt Control/Status

Bit	F	E	D	С	В	А	9	8	7	6	5	4	3	2	1	0
Data	х	х	х	х	х	х	х	х	х	х	х	х	A0	EO	FH	FF

The PCI interrupt control register (1Ch) is used to control the interrupt sent to the system, and supports four events in the ISR.

Interrupt Settings (Bits 0 to 3)

1. Sends the interrupt after the ADC stops

Bit 3	A/D Stop Interrupt
0	Disable
1	Enable

2. Reads the external trigger signal and then sends the interrupt

Bit 2	External Trigger Interrupt
0	Disable
1	Enable

3. Send the interrupt when the FIFO is half full

Bit 1	FIFO-Half Interrupt	
0	Disable	
1	Enable	

4. Sends the interrupt when the FIFO is full

Bit 0	FIFO-Full Interrupt	
0	Disable	
1	Enable	

The following is an example of how to enable the FIFO Half-full and External Trigger Interrupts:

outpw(wBase+0x1C,0x5) //Enables the FIFO Half-full and External Trigger Interrupts

Analog Input Application Case Study

Polling (Single Channel + Software Trigger)

//Set the Gain/Channel and clear the FIFO
outpw(wBase+0x00,0x8030);

//Set the Software AI Trigger
outpw(wBase+0x04,0x0000);

Pacer (Single-Channel + FIFO-Half Full Interrupt + Internal Pacer Trigger)

//Disable the Pacer Trigger
outpw(wBase+0x18,0x4000);

//Disable the Interrupt
outpw(wBase+0x1C,0x0000);

//Set the Gain/Channel and clear the FIFO
outpw(wBase+0x10,0x8030);

//Set the Base Frequency to 8 MHz
outpw(wBase+0x14,0x0001);

//Set the Frequency to 8 MHz/200 = 40 KHz
//Set the Total Number of Scan Channels to 1
outpw(wBase+0x08,0xC8);

//Enable the Interrupt and set to FIFO-Half Full
outpw(wBase+0x1C,0x8002);

//Start the Pacer Trigger
outpw(wBase+0x18,0x8000);

Channel Scan [Magic Scan] (Multi-channel + FIFO-Half Full Interrupt + Internal Pacer Trigger)

//Disable the Pacer Trigger
outpw(wBase+0x18,0x4000);

//Disable the Interrupt
outpw(wBase+0x1C,0x0000);

//Set the Base Frequency to 8 MHz
//Set the Total Number of scan Channels to 3
outpw(wBase+0x14,(0x0001|(3-1)<<3));</pre>

// Set the Frequency to 8 MHz/200 = 40 KHz
outpw(wBase +0x08,0xC8);

//Set the channel number for the first channel to 2
outpw(wBase+0x10,0x8032|(0<<10));</pre>

//Set the channel number for the second channel to 0
outpw(wBase+0x10,0x8030|(1<<10));</pre>

//Set the channel number for the third channel to 7
outpw(wBase+0x10,0x8037|(2<<10));</pre>

// Enable the Interrupt and set it to FIFO-Half Full
outpw(wBase+0x1C,0x8002);

// Start the Pacer Trigger (Start MagicScan)
outpw(wBase+0x18,0x8000); utpw(wBase+0x24,0);

External Post-Trigger (Multi-channel + External Trigger)

//Disable the Pacer Trigger
outpw(wBase+0x18,0x4000);

//Disable the Interrupt
outpw(wBase+0x1C,0x0000);

//Set the Base Frequency to 8 MHz
//Set the Total Number of Scan Channels to 3
//Set the Trigger Edge to Rising and Enable External Trigger Mode
outpw(wBase+0x14,(0x8003|2<<3));</pre>

//Set the Frequency to 8 MHz/200 = 40 KHz
outpw(wBase +0x08,0xC8);

//Set the first channel number to 2
outpw(wBase+0x10,0x8032|(0<<10));</pre>

//Set the second channel number to 0
outpw(wBase+0x10,0x8030|(1<<10));</pre>

//Set the third channel number to 7
outpw(wBase+0x10,0x8037|(2<<10));</pre>

7 Calibration

Each PCI-822/826 Series card is already fully calibrated when shipped from the factory, including the calibration coefficients that are stored in the onboard EEPROM, so it is usually unnecessary to calibrate the board again unless the accuracy is lost. The procedure described below provides a method that allows the board to be calibrated for a more precise application of voltages within the system, so that the correct voltages for your field connection can be achieved. This calibration method ensures that the effects of voltage drops caused by IR loss in the cable and/or the connector can be eliminated.

Before beginning calibration, ensure that a precise multi-meter is available. Note that the calibrated values for the Analog Input/Output channels are stored within three words in the address of the EEPROM, as shown in the table below.

EEPROM Address		D/A Calibration		
		СН 0	CH 1	
Bipolar	-10 V	0	8	
ырыа	+10 V	1	9	
Unipolar	+0 V	2	10	
	+10 V	3	11	
Dinalar	-5 V	4	12	
Bipolar	+5 V	5	13	
Unipolar	+0 V	6	14	
	+5 V	7	15	

The calibration values stored in the EEPROM address are as follows:

EEPROM Address		D/A Calibration		
		ADC 0		
Dipolar	+10 V	16		
Bipolar	-10 V	17		

Warning:

It is recommended that calibration is **not** performed until the process is fully understood.

Note: Ensure that a stable calibration source is used. An unstable calibration source will cause calibration errors and will affect the accuracy of the data acquisition.

The following is a demonstration of how to perform the calibration procedure:

5			PCI-822/826	5 Calil	bration				00
-Board Infomatior	ר 1			ſ				[
Calibration Model	-Auto Se	elect Board	↓ -		SAVE	B	ELOAD	RECOVE	EXIT
Total Board Active Board	0		2		30			R	
A0 CH 0 [(+) CN1.pin18]		CN1.pin171-	2	-			oin361 [(GND	(-)) CN1.pin17]	•
	AO(0)	JP3			-10V (Hex)	-	16 A0(8		
-10V (Hex) U 4 +10V(Hex) FFFF 5	AO(1)	JP6				FFFF	17 A0(9		
A0 CH 0 [(+) CN1.pin18]		CN1.pin17]			- AO CH O [(+	-) CN1.(·)) CN1.pin17]	
+0V (Hex) 0 7	A0(2)	JP3			+0V (Hex)	0	19 A0(10		
+10V(Hex) FFFF 8	A0(3)	JP6 🔳			+10V(Hex)	FFFF	20A0(11		
-A0 CH 0 [(+) CN1.pin18] [(GND(-))	CN1.pin17]			- AO CH O [(+	•) CN1.j	oin18] [(GND	(-)) CN1.pin17]	
-5V (Hex) 0 10	AO(4)	JP3 🔳			-5V (Hex)	0	22A0(12	2) JP7 🌒	20 21
+5V(Hex) FFFF 11	A0(5)	JP6 🕚			+5V(Hex)	FFFF	23A0(13	8)JP5 🔳	
AO CH 0 [(+) CN1.pin18] [(GND(-))	CN1.pin17]			- AO CH 0 [(+	+) CN1.j	oin18] [(GND	(-)) CN1.pin17]	
OV (Hex) 0 13	AO(6)	ЈРЗ 🔵		2	0V (Hex)	0	25AO(14	4) JP7 🔴	
+5V(Hex) FFFF 14	A0(7)	JP6 🖲			+5V(Hex)	FFFF	26 ^{AO(15}	5) JP5 🗨	
- AI CH 0 [(+) CN1.pin1] [(0	GND(-) CN1	1.pin20)]			NOTE-				
+10V(Hex) 7FFF 28	AI(16)	S.E	•	27			setting from	m will change the board. The error	setting
4 (9-2011)	AI(17)	D.I.F			1			e your device.Plea of this program.	ise De
					_				

The following pin assignments are used in the calibration process.

- 1. D/A Ch0 (+): CON3.pin 18
- 2. A.GND(+): CON3.pin 1
- 3. D/A Ch1 (+): CON3.pin 36
- 4. A/D Ch0 (-): CON3.pin 21

To calibrate the PCI-822/826 Series card, follow the procedure outlined below.

Step	Description	Step	Description
1	Select the calibration model for the board	16	 Enter the D/A data Click the A0(8) button Repeat items 1 and 2 until the D/A output voltage for CH0 is -10 V
2	Select the number of the active board	17	 (1) Enter the D/A data (2) Click the A0(9) button (3) Repeat items 1 and 2 until the D/A output voltage for CH0 is 10 V
3	Set jumper JP3 to Bipolar and jumper JP6 to 10 V	18	Set jumper JP5 to Unipolar and jumper JP7 to $\frac{10}{V}$
4	 Enter the D/A data Click the A0(0) button Repeat items 1 and 2 until the D/A output voltage for CH0 is -10 V 	19	 Enter the D/A data Click the A0(10) button Repeat items 1 and 2 until the D/A output voltage for CH0 is 0 V
5	 (1) Enter the D/A data (2) Click the A0(1) button (3) Repeat items 1 and 2 until the D/A output voltage for CH0 is 10 V 	20	 Enter the D/A data Click the A0(11) button Repeat items 1 and 2 until the D/A output voltage for CH0 is 10 V
6	Set jumper JP3 to Unipolar and jumper JP6 to 10 ${\sf V}$	21	Set jumper JP5 to Bipolar and jumper JP7 to 5 V
7	 Enter the D/A data Click the A0(2) button Repeat items 1 and 2 until the D/A output voltage for CH0 is 0 V 	22	 Enter the D/A data Click the A0(12) button Repeat items 1 and 2 until the D/A output voltage for CH0 is -5 V
8	 Enter the D/A data Click the A0(3) button Repeat items 1 and 2 until the D/A output voltage for CH0 is 10 V 	23	 (1) Enter the D/A data (2) Click the A0(13) button (3) Repeat items 1 and 2 until the D/A output voltage for CH0 is 5 V
9	Set jumper JP3 to Bipolar and jumper JP6 to $5 V$	24	Set jumper JP5 to Unipolar and jumper JP7 to 5 V
10	 Enter the D/A data Click the A0(4) button Repeat items 1 and 2 until the D/A output voltage for CH0 is -5 V 	25	 Enter the D/A data Click the A0(14) button Repeat items 1 and 2 until the D/A output voltage for CH0 is 0 V
11	 (1) Enter the D/A data (2) Click the AO(5) button (3) Repeat items 1 and 2 until the D/A output voltage for CH0 is 5 V 	26	 Enter the D/A data Click the A0(15) button Repeat items 1 and 2 until the D/A output voltage for CH0 is 5 V
12	Set jumper JP3 to Unipolar and jumper JP6 to 5 V $$	27	Set jumper J1 to D.I.F.F.
13	 Enter the D/A data Click the AO(6) button Repeat items 1 and 2 until the D/A output voltage for CH0 is O V 	28	Use A/D CH0 to measure the 10 V Voltage then click the AI(16) button
14	 Enter the D/A data Click the A0(7) button Repeat items 1 and 2 until the D/A output voltage for CH0 is 5 V 	29	Use A/D CH0 to measure the -10 V Voltage then click the AI(17) button
15	Set jumper JP5 to Bipolar and jumper JP7 to $10 \ \text{V}$	30	Click the Save button to complete the calibration

Appendix

A1. DOS Library Function Description

All of the functions provided for PCI-822/826 card are listed in Appendixes A1-2 to A1-5 below. This list of functions is expanded on in the text that follows. However, in order to provide a clear and simplified description for the functions, the attributes of the input and output parameters for each function are indicated as [input] and [output] respectively, as shown in following table. Furthermore, the error codes for all functions supported by the PCI-822/826 Series card are also provided in Appendix A1-1.

Keyword	Parameter must be set before calling the function	Data/values from this parameter is retrieved after calling the function
[Input]	Yes	No
[Output]	No	Yes
[Input, Output]	Yes	Yes

A1-1: Error Code Definitions

Error Code	Error ID	Description
0	NoError	The command was OK
1	DriverHandleError	There was an error opening the device driver
2	DriverCallError	An error occurred while calling the driver functions
3	FindBoardError	The board cannot be found on the system
4	TimeOut	A Timeout occurred
5	ExceedBoardNumber	The board number was invalid. The valid range is 0 to
6	NotFoundBoard	(TotalBoard - 1) The board cannot be detected on the system
7	InvalidChannel	The channel number was invalid
8	AlQueueError	A driver buffer error occurred
9	FIFOError	A FIFO error occurred on the device
10	InvalidEEPBlock	The EEPROM Block was invalid
11	InvalidEEPAddr	The EEPROM Address was invalid
12	InvalidCfgCode	The Gain Code was invalid

A1-2: Driver Functions

PCI82X_DriverInit

This function is used to detect all PCI-822/826 cards installed in the system, and is implemented based on the PCI Plug and Play mechanism. Once all the PCI-822/826 Series cards installed in the system are detected, the resource information will be saved to the library.

Syntax:

WORD **PCI82X_DriverInit**(WORD *wBoards);

> Parameters:

<u>wBoardNo</u> [Output] The number of boards found on the Host PC.

Returns: Refer to <u>Appendix A1-1 Error Code Definitions</u>.

PCI82X_DriverClose

This function is used to release the driver resources currently in use by the PCI-822/826 Series card.

- Syntax:
 WORD PCI82X_DriverClose(void);
- Parameters: None
- Returns: Refer to Appenidx A1-1 Error Code Definitions.

PCI82X_GetConfigAddressSpace

This function is used to retrieve the resource information found for all PCI-822/826 Series cards installed in the system. The application can then be used to directly control all of the functions related to the PCI-822/826 Series cards.

Syntax:

WORD PCI82X_GetConfigAddressSpace(WORD wBoardNo,

WORD *wBaseAddr, WORD *wBaseDIO, WORD *wBaseDA, WORD *wBaseAD, WORD *wIrqNo, WORD *wModeID, WORD *wCardID);

> Parameters:

<u>wBoardNo</u> [Input] The board number (Base 0)

<u>wBaseAddr</u>

[Output] The section 0 base address for the board

<u>wBaseDIO</u> [Output] The section 1 base address for the board

<u>wBaseDA</u> [Output] The section 2 base address for the board

<u>wBaseAD</u>

[Output] The section 3 base address for the board

<u>wirqNo</u> [Output] The IRQ number being used by the board

<u>wModeID</u>

[Output] The Model ID number (Sub-Device ID, see Section 6.1 for details) 0x822 is PCI-822 0x826 is PCI-826

<u>wCardID</u>

[Output] The Card ID number as configured using DIP Switch SW1 (see Section 2.3 for details)

Returns:

A1-3: Digital I/O Functions

PCI82X_SetDIOMode32

This function is used to configure the mode to be used for the I/O ports (Port A and Port B) on a specified board.

Syntax: WORD PCI82X_SetDIOMode32(WORD wBoardNo,

WORD wDirection);

Parameters:

<u>wBoardNo</u> [Input] The board number (Base 0)

wDirection

[Input] Configures the mode to be used for Digital I/O ports A and B as either Digital Input or Digital Output, Bit O is Port A, and Bit 1 is Port B, as indicated below.

wDirection	Bit 1	Bit 0
0	Port B Input	Port A Input
1	Port B Output	Port A Output

Returns:

PCI82X_WriteDO

This function is used to send data to a specific I/O port on a specified board in 16-bit integer format.

> Syntax:

WORD **PCI82X_WriteDO**(WORD wBoardNo, WORD wPortNo, WORD wValue);

> Parameters:

<u>wBoardNo</u> [Input] The board number (Base 0)

<u>wPortNo</u>

[Input] The Port number, where 0 denotes Port A, and 1 denotes Port B

<u>wValue</u>

[Input] The data to be sent to the specified I/O port in 16-bit integer format

Returns:

PCI82X_ReadDI

This function is used to data from a specific I/O port on a specified board in 16-bit integer format.

> Syntax:

WORD **PCI82X_ReadDI**(WORD wBoardNo, WORD wPortNo, WORD *wValue);

> Parameters:

<u>wBoardNo</u> [Input] The board number (Base 0)

<u>wPortNo</u>

[Input] The Port number to be read, where 0 denotes Port A, and 1 denotes Port B

<u>*wValue</u>

[Output] The data received from the I/O port in 16-bit integer format

Returns:

A1-4: Analog Output Functions

PCI82X_WriteAO

This function is used to output the voltage value to a specific D/A channel on a specified board in float format.

> Syntax:

WORD PCI82X_WriteAO(WORD wBoardNo,

WORD wChannel, WORD wConfig, float fValue);

> Parameters:

<u>wBoardNo</u> [Input] The board number (Base 0)

<u>wChannel</u> [Input] The D/A channel number

<u>wConfiq</u>

[Input] Configures the voltage range for the Analog Output, as indicated below.

wConfig	Min.	Max.
0	0 V	+5 V
1	-5 V	+5 V
2	0 V	+10 V
3	-10 V	+10 V

<u>fValue</u> [Input] The data sent to the D/A channel in float format

Returns:

PCI82X_WriteAOH

This function is used to send data to a specific D/A channel on a specified board in 16-bit integer format.

> Syntax:

WORD **PCI82X_WriteAO**(WORD wBoardNo, WORD wChannel, WORD wValue);

> Parameters:

<u>wBoardNo</u> [Input] The board number (Base 0)

<u>wChannel</u> [Input] The D/A channel number

<u>wValue</u> [Input] The data sent to the D/A channel in 16-bit integer format

Returns:

A1-5: Analog Input Functions

PCI82X_PollingAI

This function is used to perform multiple A/D conversions on a specified board using the polling method, and then returns the A/D data as a float value.

> Syntax:

WORD **PCI82X_PollingAI**(WORD wBoardNo,

WORD wChannel, WORD wConfigCode, DWORD dwDataCount, float fValue[]);

> Parameters:

<u>wBoardNo</u> [Input] The board number (Base 0)

<u>wChannel</u> [Input] The A/D channel number

wConfigCode

[Input] Configures the voltage range for the Analog Input, as indicated below.

wConfigCode	Al Range
0	± 10.00 V
1	± 5.00 V
2	± 2.50 V
3	± 1.25 V

<u>dwDataCount</u>

[Input] The number of A/D conversions that will be performed

<u>fValue[]</u>

[Output] An array containing the A/D data received from the Analog Input channel in float format

Returns:

PCI82X_PollingAIH

This function is used to perform multiple A/D conversions on a specified board using the polling method, and then returns the A/D data in 16-bit integer format.

Syntax:

WORD **PCI82X_PollingAIH**(WORD wBoardNo,

WORD wChannel, WORD wConfigCode, DWORD dwDataCount, WORD wValue[]);

> Parameters:

<u>wBoardNo</u> [Input] The board number (Base 0)

<u>wChannel</u> [Input] The A/D channel number

wConfiqCode

[Input] Configures the voltage range for the Analog Input, as indicated below.

wConfigCode	Al Range
0	± 10.00 V
1	± 5.00 V
2	± 2.50 V
3	± 1.25 V

<u>dwDataCount</u>

[Input] The number of A/D conversions that will be performed

<u>wValue[]</u>

[Output] An array containing the A/D data received from the Analog Input channel in 16-bit integer format

Returns:

PCI82X_StartAI

This function is used to start pacer trigger operation on a specified board and returns to the caller immediately. The A/D data is stored in the driver buffer and either the PCI82X_GetAIBuffer() or the PCI82X_GetAIBufferH() function must be called to retrieve the A/D data. Refer to the PCI82X_StopAI() function for details of how to stop the pacer trigger operation.

Syntax:

WORD **PCI82X_StartAI**(WORD wBoardNo,

WORD wChannel, WORD wConfig, float fSamplingRate, DWORD dwDataCount);

> Parameters:

<u>wBoardNo</u> [Input] The board number (Base 0)

<u>wChannel</u> [Input] The A/D channel number

<u>wConfiq</u>

[Input] Configures the voltage range for the Analog Input, as indicated below.

wConfig	Al Range
0	± 10.00 V
1	± 5.00 V
2	± 2.50 V
3	± 1.25 V

fSamplingRate

[Input] Sets the sampling rate in Hz

<u>dwDataCount</u>

[Input] The Analog Input data value

Returns:

PCI82X_StartAlScan

This function is used to start MagicScan operation on a specified board and returns to the caller immediately. The A/D data is stored in the driver buffer and either the PCI82X_GetAIBuffer() or the PCI82X_GetAIBufferH() function must be called to retrieve the A/D data. Refer to the PCI82X_StopAI() function for details of how to stop the MagicScan operation.

Syntax:

WORD PCI82X_StartAlScan(WORD wBoardNo,

WORD wChannels, WORD wChannelList[], WORD wConfigList[], float fSamplingRate, DWORD dwDataCountPerChannel);

> Parameters:

<u>wBoardNo</u> [Input] The board number (Base 0)

<u>wChannels</u> [Input] The total number of A/D channels to be scanned

wChannelList[]

[Input] An array containing the scan channel sequence

wConfiqList[]

[Input] An arrary containing the voltage range configuration for each Analog Input channel to be scanned, as indicated below.

wConfig	Al Range
0	± 10.00 V
1	± 5.00 V
2	± 2.50 V
3	± 1.25 V

<u>fSamplingRate</u>

[Input] Sets the total sampling rate in Hz

dwDataCountPerChannel

[Input] The A/D data values for every Analog Input channels

Returns:

Refer to Appendix A1-1 Error Code Definitions.

> Example:

wChannels = 3 wChannelList[0] = 2 wChannelList[1] = 5 wChannelList[2] = 3	<pre>//Scan 3 channels //The first channel to be scanned is AI Channel 2 //The second channel to be scanned is AI Channel 5 //The third channel to be scanned is AI Channel 3</pre>			
wConfigList[0] = 2	//The input range for the first channel is +/- 2.5 V			
wConfigList[1] = 0	//The input range for the second channel is +/- 10 V			
wConfigList[2] = 1	//The input range for the third channel is +/- 5 V			
fSamplingRate = 30000	//The total sampling rate =30 kHz,			
	//Therefore, each channel is (fSamplingRate/wChannels) Hz			
	→30 kHz/3 = 10 kHz			
dwDataCountPerChannel = 5				
- CH2 CH5 CH3 CH2 CH5 CH3				

Refer to the following table for details of where the data is stored in the driver buffer:

0	CH2	Val0
1	CH5	Val0
2	СН3	Val0
3	CH2	Val1
4	CH5	Val1
5	CH3	Val1

User Manual, Ver. 1.4, Nov. 2015, PMH-024-13, Page: 77

PCI82X_GetAIBuffer

This function is used to retrieve the A/D data from the driver buffer of a specified board in float format.

> Syntax:

WORD **PCI82X_GetAIBuffer**(WORD wBoardNo, DWORD dwDataCount,

float fValue[]);

> Parameters:

<u>wBoardNo</u> [Input] The Board number (Base 0)

<u>dwDataCount</u> [Input] The Analog Input data value

<u>fValue[]</u>

[Output] An array containing the A/D data received from the Analog Input channels in float format

Returns: Refer to Appendix A1-1 Error Code Definitions.

PCI82X_GetAIBufferH

This function is used to retrieve the A/D data from the driver buffer of a specified board in 16-bit integer format.

Syntax:

WORD **PCI82X_GetAIBufferH**(WORD wBoardNo,

DWORD dwDataCount, WORD hValue[]);

> Parameters:

<u>wBoardNo</u> [Input] The board number (Base 0)

<u>dwDataCount</u>

[Input] The A/D data value for every Analog Input channel

<u>hValue[]</u>

[Output] An array containing the A/D data received from the Analog Input channels in 16-bit integer format

Returns:

Refer to Appendix A1-1 Error Code Definitions.

PCI82X_StopAI

This function is used to stop all currently active MagicScan or Pacer trigger functions on a specified board.

Syntax:

WORD PCI82X_StopAI(WORD wBoardNo);

Parameters:

<u>wBoardNo</u> [Input] The board number (Base 0)

Returns:

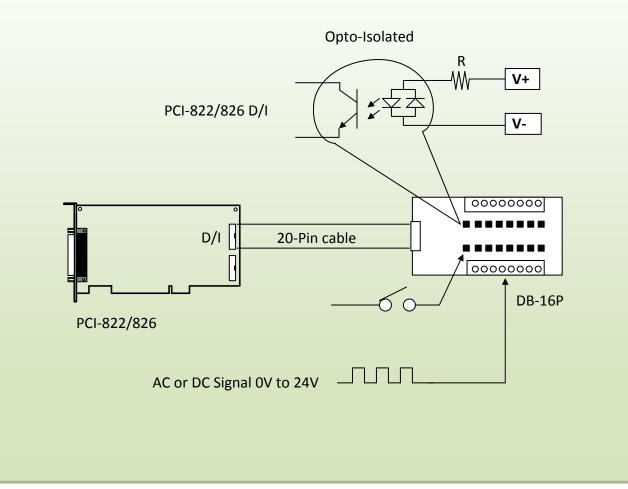
A2. Daughterboards

DB-37

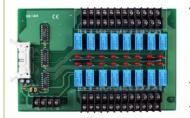
The DB-37 is a general-purpose daughterboard for devices that include 37-pin D-sub connectors, and is designed for easy wiring.

DN-37

The DN-37 is a general-purpose daughterboard for devices that include 37-pin D-sub connectors. It is DIN-Rail mountable and is designed for easy wiring.

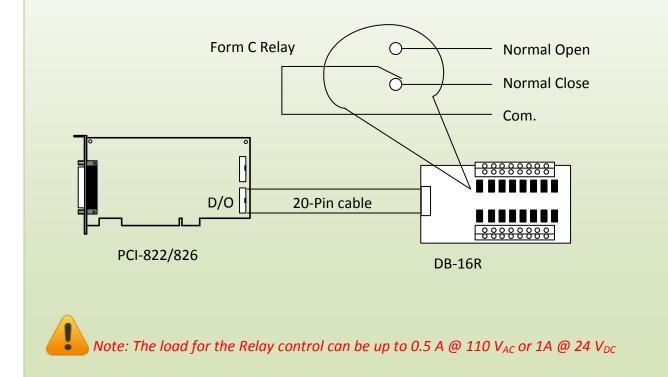


DB-16P Isolated Digital Input Daughterboard



The DB-16P is a 16-channel isolated Digital Input daughterboard with optically isolated inputs that consist of a bi-directional optocoupler with a resistor to allow current sensing. The DB-16P can be used to sense DC signals from TTL levels up to 24 V, or can be used to sense a wide range of AC signals. This board can also be used to isolate the Host system

from high common-mode voltages, ground loops and transient voltage spikes that can often occur in harsh industrial environments.



DB-16R Relay Output Daughterboard

The DB-16R is a 16-channel Relay Output daughterboard that provides 16 Form C Relay Output channels which enable the efficient switching of loads via programmable controls. Both the connectors and the functionally are compatible with 785 Series boards an industrial-type terminal block. The Relay channels are powered by applying a 5 V signal

to the appropriate channel via a 20-pin flat cable connector. The DB-16R includes 16 LEDs, one for each Relay channel, which are illuminated when the associated relay is activated. To prevent the power supply on the Host system from being overloaded, the DB-16R includes a screw terminal to allow an external power supply to be connected.

