ECAT-2074A

EtherCAT Four Channel BISS-C/SSI Absolute Encoder Master

User Manual

(Version 1.0)

WARRANTY

All products manufactured by ICP DAS are warranted against defective materials for a period of one year from the date of delivery to the original purchaser.

WARNING

ICP DAS assumes no liability for damages consequent to the use of this product. ICP DAS reserves the right to change this manual at any time without notice. The information furnished by ICP DAS is believed to be accurate and reliable. However, no responsibility is assumed by ICP DAS for its use, nor for any infringements of patents or other rights of third parties resulting from its use.

COPYRIGHT

Copyright © 2023 by ICP DAS. All rights are reserved.

TRADEMARK

Names are used for identification only and may be registered trademarks of their respective companies.

CONTACT US

If you have any questions, please feel free to contact us via email at: service@icpdas.com service.icpdas@gmail.com

Revision

Revision	Date	Description	Author
1	30.03.2023	Initial version	Nick Wang

Contents

1	Product (Overview	3
	1.1	Introduction	3
	1.2	Technical Data	3
	1.3	Specification	4
	1.4	Dimensions	6
2	Scope of	Delivery	7
3	LED Defir	nition	8
4	Rotary sw	vitch definitionvitch definition	10
5	Wiring		11
	5.1	Connection Interfaces	11
	5.2	Encoder Connection	13
6	Basics Co	mmunication	14
	6.1	EtherCAT Cabling	14
	6.2	EtherCAT State Machine	14
	6.3	Synchronization Modes	16
	6.3.2	1 Free Run Mode	16
	6.3.2	2 Distributed Clocks (DC Mode)	18
7	Project In	itegration	21
	7.1	ESI File	21
	7.1.3	1 Import of ESI File	21
	7.2	Device Setup and Configuration	21
	7.2.2	1 Scanning of the EtherCAT Device	22
	7.2.2	2 Encoder Counter Configuration	23
	7.2.3	B EtherCAT Slave Process Data Assignment	25
8	Paramete	er Description	28
	8.1	Transmission Mode	28
	8.2	Number of Position Bits	29
	8.3	Transmission Pulse Frequency	29
	8.4	Data Encoding Mode	30
	8.5	CRC Generator Polynomial	30
	8.6	CRC Invert	30
	8.7	Measured Data Delay Time	31
	8.8	Latch Data Delay Time	31
	8.9	Encoder Status	31
9	CoE Inter	face	32
	9.1	General Description	32
	9.2	Save Configuration Data to Memory	34
10	Object De	escription and Parameterization	38
	10.1	Standard Objects	38
	10.2	TxPDO Mapping Objects	39
	10.3	Sync Manager Objects	39
ICF	DAS	1 Page	

10.4	Input Data	41
10.5	Configuration Data	43
10.6	Information and Diagnostic Data	43
10.7	Configuration Parameters Storage	44
10.8	Station alias Configuration	45

2

1 Product Overview

1.1 Introduction

The EtherCAT slaves ECAT-2074A are absolute encoder masters. ECAT-2074A provides four channels. Each channel is independent of each other. Supports SSI (Serial Synchronous Interface) & BiSS-C (BiSS Continuous Mode) two serial transmission interfaces, and supports a maximum transmission frequency of 10MHz, a maximum transmission bit of 48bit, and Automatic compensation of line delays in BiSS-C mode.

1.2 Technical Data

Features:

- EtherCAT slave
- 4 channel absolute encoder master station
- · Transmission interface: SSI, BiSS-C
- Maximum transmission frequency: 10MHz
- Transmission data format: binary code, gray code
- Maximum transmission data bits: 48 bit (BiSS-C includes error, warming, CRC)
- BiSS-C mode can automatically compensate the delay caused by the length of the cable

ICP DAS 3 Page

Safety detection in BiSS-C mode: error, warming, CRC

1.3 Specification

- Encoder input specification:
 - Parallel I/O Module:
 - 4 Channel ,absolute encoder
 - Transmission interface:
 - C SSI mode
 - BiSS-C mode
 - Maximum Counting Rate:
 - 10M pulse/sec
 - Output/Input Signal:
 - Input Signal: difference signal (RS422)
 - Output Signal : difference signal (RS422)
 - Voltage Level : -6V~+6V (Maximum Voltage)
- EtherCAT specification:
 - 2 x RJ-45 bus interface
 - Distance between stations up to 100 m (100BASE-TX)
 - Support daisy chain connection
 - EtherCAT conformance test tool verified
 - Supports Free-Run, SM synchron and Distributed Clock (DC) operation modes
 - Cycle times: 1 ms or an integer multiple of 1 ms
- LED indicators for EtherCAT and encoder status

Item	Specification
Encoder	
Number of encoder inputs	4 encoder channel
Sampling type	Simultaneous
Resolution	max. 48 bit position
Maximum input pulse frequency	10MHz
Input level:	• 5V (default)
Photo-Isolation	2500 V _{DC}
LED Indicators	
Diagnostic LED	Power, EtherCAT status, signal status of each
	encoder input
Communication Interface	
Connector	2 x RJ-45
Protocol	EtherCAT
Distance between stations	Max. 100 m (100BASE-TX)
Data transfer medium	Ethernet/EtherCAT Cable (Min. CAT 5), Shielded
Power	
Input voltage range	20 V _{DC} ~ 30V _{DC}
Power consumption	Maximum 4.5W
EMS Protection	
ESD (IEC 61000-4-2)	4 KV Contact for each channel
EFT (IEC 61000-4-4)	Signal: 1 KV Class A; Power: 1 KV Class A
Surge (IEC 61000-4-5)	1 KV Class A
Mechanism	
Installation	DIN-Rail
Dimensions (LxWxH) [mm]	110mm x 90mm x 33mm (without connectors)
Case material	UL 94V-0 housing
Environment	
Operating temperature	-25℃ ~ 70℃
Storage temperature	-30°℃ ~ 80°℃
Relative humidity	10 ~ 90%, No condensation
Table 4. Table to be the	

Table 1: Technical data

1.4 Dimensions

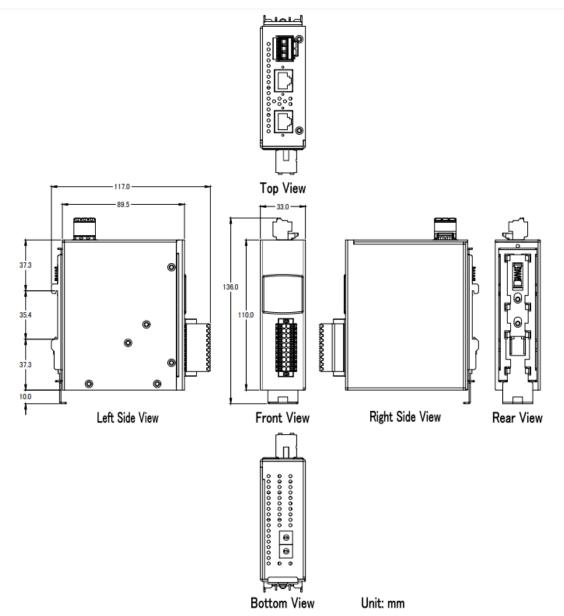


Figure 1: Dimensions of the ECAT-2074A

2 Scope of Delivery

The shipping package includes the following items:

- 1 x ECAT-2074A
- 1 x 20-pin plug-in connector
- 1 x 3-pin plug in connector (for power supply)
- 1 x Quick Start manual

Figure 2: ECAT-2074A module and Quick Start manual

Note:

If any of these items are missing or damaged, please contact your local distributor. Please keep the original retail box with all retail packaging (Styrofoam, inner boxes, fasteners, etc.) in case you need to return the product.

More information about the ECAT-2074A is available on the product website. Enter the product name in the search function of the main ICPDAS website to access the product website:

Step 1: Go to the ICPDAS main website http://www.icpdas.com

Step 2: Enter "ECAT-2074A" in the search editor to access the ECAT-2074A website

The User Manual, Quick-Start, EtherCAT Slave Information (ESI) file and FAQ can be downloaded from the website.

 Technical support: service@icpdas.com

3 LED Definition

The ECAT-2074A provides on the front side several diagnostic LEDs which indicates the signal status of each encoder channel.

Furthermore there are three LEDs to show the EtherCAT network status. The exact meaning of each LED is described in the following tables:

Figure 3: ECAT-2074A LEDs

EtherCAT LED	Color	State	Description
RUN	red		This LED indicates the operation state of
			the EtherCAT slave:
		Off	Device is in INIT state
		Flashing	Device is in PREOP state
		Single flash	Device is in SAFEOP state
			Outputs remain in safe state
		On	Device is in OP state
IN	green		Indicates the communication status of
			the EtherCAT port IN
		Off	No connection
		Flashing	Link and activity (e.g. data exchange with
			the master)
		On	Link without any activity
OUT	green		Indicates the communication status of
			the EtherCAT port OUT. Further EtherCAT
			slave can be connected to the port OUT
		Off	No EtherCAT slaves are connected to port
			OUT
		Flashing	Link and activity (e.g. data exchange
			connected slaves)
		On	Link without any activity

Table 2: EtherCAT status indicator

ECAT-2074A Diagnostic LEDs:

Control LED	Color	Description
*	red	- Power indicator
* * * * * * * (first row)	green	- LED 0: channel 0 enabled status
01234567		- LED 1: channel 1 enabled status
		- LED 2: channel 2 enabled status
		- LED 3: channel 3 enabled status
		- LED 4: channel 0 error
		- LED 5: channel 1 error
		- LED 6: channel 2 error
		- LED 7: channel 3 error

Table 3: ECAT-2074A Diagnostic LEDs

9

4 Rotary switch definition

Figure 4: ECAT-2074A alias rotary switch

The alias rotary switch is divided into two, HIGH (X16) is the high bit, IOW (X1) is the low bit, and the range is $0x00^{\circ}0xFF$.

5 Wiring

5.1 Connection Interfaces

Figure 5: ECAT-2074A side view with power supply and EtherCAT connection

Name	Signal	Description
F.G	Frame ground	
GND	Power supply: Ground 0V (from negative power contact)	Feeding for ECAT-2074A
+Vs	Power supply: +24 V _{DC} (from positive power contact)	
IN	EtherCAT signal input	Incoming EtherCAT cable
OUT	EtherCAT signal output	Outgoing EtherCAT cable

Table 5: ECAT-2074A power supply and EtherCAT interfaces

Figure 6: ECAT-2074A front view with encoder inputs

ECAT-2074A Connection interfaces of the encoder:

Name	Signal	Signal Description	
CO-	Input	Encoder Input CLKO-	
CO+	Input	Encoder Input CLKO+	Encoder Channel 0
D0-	Input	Encoder Input Data0-	Encoder Chainlei 0
D0+	Input	Encoder Input Data0+	
C1-	Input	Encoder Input CLK1-	
C1+	Input	Encoder Input CLK1+	Encoder Channel 1
D1-	Input	Encoder InputData1-	Encoder Channel 1
D1+	Input	Encoder InputData1+	
C2-	Input	Encoder Input CLK2-	
C2+	Input	Encoder InputCLK2+	Encoder Channel 2
D2-	Input	Encoder InputData2-	Encoder Channel 2
D2+	Input	Encoder InputData2+	
C3-	Input	Encoder Input CLK3-	
C3+	Input	Encoder InputCLK3+	Encoder Channel 3
D3-	Input	Encoder InputData3-	Encoder Channel 3
D3+	Input	Encoder InputData3+	
+5V		+5VDC	
GND		OV	

Table 6: ECAT-2074A Connection interfaces of the encoder

5.2 Encoder Connection

ECAT-2074A can accept the absolute encoder input of SSI and BISS interface. By default it is set to support the BISS interface.

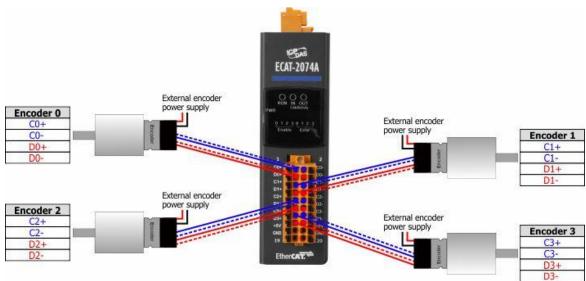


Figure 7: ECAT-2074A encoder connection

6 Basics Communication

6.1 EtherCAT Cabling

The cable length between two EtherCAT devices must not exceed 100 m.

Cables and connectors

For connecting EtherCAT devices only Ethernet connections (cables + plugs) that meet the requirements of at least category 5 (CAT5) according to EN 50173 or ISO/IEC 11801 should be used. EtherCAT uses 4 wires for signal transfer.

The pin assignment is compatible with the Ethernet standard (ISO/IEC 8802-3).

6.2 EtherCAT State Machine

The state of the EtherCAT master and slave is controlled via the EtherCAT State Machine (ESM). The state determines which functions are accessible or executable in the EtherCAT slave. State changes are typically initiated by requests of the master and acknowledged by the slave after the successful initialization. In case of an internal error, the slave automatically changes to a lower state.

The ECAT-2074A supports four states:

- Init (state after Reset)
- Pre-Operational
- Safe-Operational
- Operational

Page

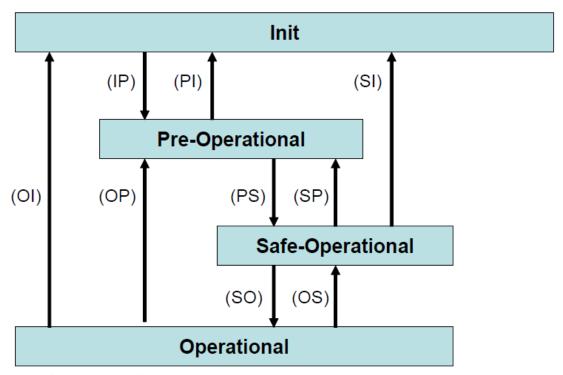


Figure 9: EtherCAT state machine

Init

After switch-on the EtherCAT slave is in the initial state. Only ESC register communication is possible, but no mailbox or process data communication. The slave initializes the service object data with default value or with values previously stored to the local memory. The EtherCAT master assigns the station address and configures the sync manager channels 0 and 1 for acyclic mailbox communication.

Pre-Operational (Pre-Op)

In Pre-Op state acyclic mailbox communication is possible, but not process data communication. In this state the EtherCAT master does the following configurations:

- Set the sync manager 2 and 3 of the ECAT-2074A for process data communication (from sync manager channel 2)
- The FMMU channels
- PDO mapping or the sync manager PDO assignment
- The user has the option to save motion control related configuration data (0x8000 0x8020) to a non-volatile memory.

Safe-Operational (Safe-Op)

In Safe-Op state both mailbox and process data communication are enabled, but the slave keeps its outputs in a safe state, while the input data are updated cyclically. The slave will ignore the output data sent by the master and just return the current input

data (e.g. digital input, encoder value, etc.)

The sync manager watchdog expires when the master application does not provide new output process data within the configured watchdog time. In this case the slave will automatically go from operational state to ERROR-SAFEOP state.

Operational (Op)

Here both the process data object (PDO) and service data object (SDO) are fully enabled. Master sends cyclic output data and read input data. The ECAT-2074A supports three type of Op modes: Free Run mode, SM-Synchron and Distributed Clock (DC) mode.

6.3 Synchronization Modes

ECAT-2074A devices support two different modes:

- Free Run: The master cycle time and slave cycle time are independent and not synchronized.
- Distributed Clock (DC): The cycle time and interval is fixed and deterministic. Both the
 master and slave cycle time are synchronized. The slave processes data at a fixed and
 deterministic time interval (DC cycle time). The slave expect the master to exchange
 process data at a fixed time interval. If the master does not send/read data within the set
 time interval then an synchronization error will be generated by the slave.

6.3.1 Free Run Mode

The slave operates autonomously based on its own cycle and is not synchronized with the EtherCAT cycle. The master cycle time and the slave cycle time are fully independent which means each slave device reads/writes its own process data according to its local time, independent of the master's cycle time.

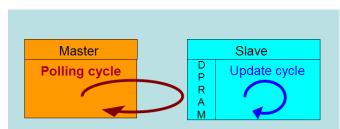


Figure 10: Master-slave cycle in Free Run mode

The following diagram shows the process timing of the slave in Free Run mode in detail:

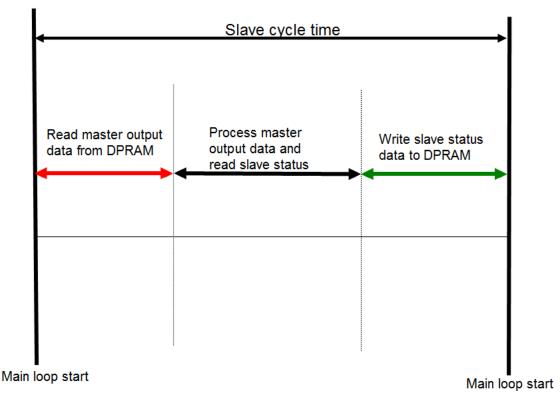


Figure 11: Slave processing sequence in Free-run mode

The slave firmware checks in each cycle time the memory of the EtherCAT slave chip (ESC) whether new output data has been received from the master. Newly received data will be processed. In the next step the encoder input status are being read from the FPGA chip. In the final step the read status are being written to the DPRAM, so that the master can retrieve the data ESC DPRAM in the next cycle time.

Free Run synchronization parameter has to be set in PREOP mode: 0x1C33.1 = 0

The setting of the Free Run synchronization parameter can be done in TwinCAT by clicking on the "CoE online" tab of the ECAT-2074A slave. Make sure the slave is set into PreOP mode before modifying the synchronization parameters

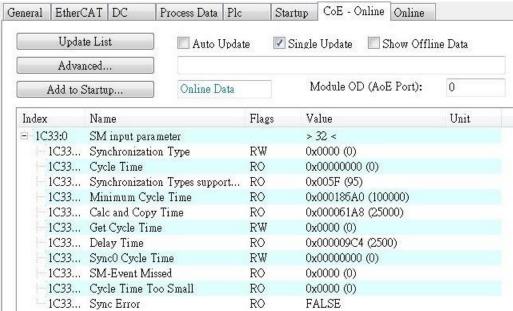


Figure 12: SyncManager setting for Free-Run mode

6.3.2 Distributed Clocks (DC Mode)

DC clock synchronization enables all EtherCAT devices (master and slaves) to share the same EtherCAT system time. The EtherCAT slaves in the network can be synchronized to each other. This enables the master to simultaneously set the output (e.g. digital output, pulse output) or to synchronously read inputs (e.g. digital input, encoder counter) of different slaves in the EtherCAT network.

For system synchronization all slaves are synchronized to one reference clock. Normally the first EtherCAT slave closest to the master with Distributed Clocks capability becomes the clock base for the master as well as for other DC slaves.

The EtherCAT slave is synchronized with the SYNCO or SYNC1 event of the distributed clock system. After the EtherCAT network has been set into DC communication mode by the master, the ESC (EtherCAT slave chip) of each slave generates fixed time hardware interrupt which triggers the slave firmware to process the PDO data received from the master. The master cycle time and the ESC hardware interrupt time interval are fully synchronized to the first slave in the network that is used as a reference clock with the SYNCO signal.

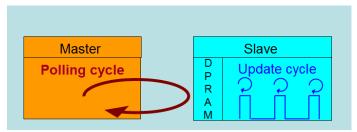


Figure 13: Master-slave cycle in DC mode

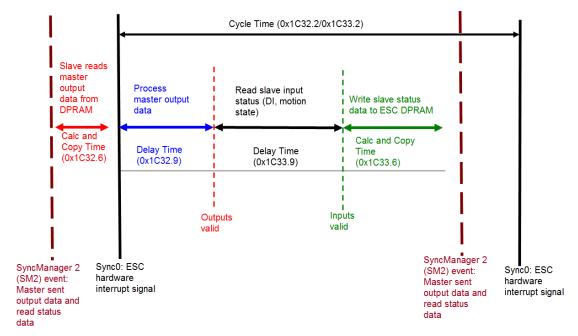


Figure 14: Internal slave processing sequence in DC mode

Once the slave receives process data (RxPDOs) from the master the SM2 event is triggered which causes the firmware to read the data from the ESC memory. The ESC interrupts the firmware at fixed time interval to process the data received from the master and write the status data to the ESC memory. Every time when the master fails to sent process data within the DC cycle time the internal sync error counter is being increase by three counts. This error counter is being decreased by one count for every successful DC cycle. Once the error counter reached the maximum count (default 4) a sync error will be generated and the slave goes into Safe OP mode (Sync Error 0x1C33:20 TRUE). The maximum count value can be set by changing the default value of the "Sync Error Counter Limit" (0x10F1:02).

Index	Name	Flags	Value
Ė ··· 10F1:0	Error Settings		>2<
10F1:01	Local Error Reaction	RW	0x00000001 (1)
10F1:02	Sync Error Counter Limit	RW	0x0004 (4)

Figure 15: Sync error counter limit object

The setting of the sync manager for the output and input data is available at the TwinCAT "CoE online" tab.

Index	Name	Flags	Value
Ė ··· 1C32:0	SM output parameter		> 32 <
1C32:01	Synchronization Type	RW	0x0002 (2)
1C32:02	Cycle Time	RO	0x00000000 (0)
1C32:04	Synchronization Types supported	R0	0x401F (16415)
1C32:05	Minimum Cycle Time	RO	0x001E8480 (2000000)
1C32:06	Calc and Copy Time	RO	0x0007A120 (500000)
1C32:08	Get Cycle Time	RW	0x0001 (1)
1C32:09	Delay Time	RO	0x000927C0 (600000)
1C32:0A	Sync0 Cycle Time	RW	0x005B8D80 (6000000)
1C32:0B	SM-Event Missed	R0	0x0000 (0)
1C32:0C	Cycle Time Too Small	RO	0x0000 (0)
1C32:20	Sync Error	RO	FALSE

Figure 16: SyncManager 2 parameters

SyncManager parameter description (time unit: nanosecond):

- Calc and Copy Time (0x1C33.6): Required time to copy the process data from the ESC to the local memory and calculate the output value.
- Delay Time (0x1C33.9): Delay from receiving the trigger to set the output or latch the input.
- Cycle Time (0x1C33.2): The current cycle time for the application. When using DC synchronization the value is read from register 0x9A0:0x9A3.
- 0x1C33.5 (Min Cycle Time): Minimum cycle time for the application. It is the total execution time of all slave application related operations.

7 Project Integration

In this chapter the integration of the ECAT-2074A device into a TwinCAT controlled EtherCAT network is being described. In general the ECAT-2074A is a standard EtherCAT slave which can be controlled by any standard EtherCAT master (e.g. Acontis, CODESYS, etc.).

7.1 ESI File

A ESI file describes the properties and functions supported by the ECAT-2074A. By using the ESI file an easy and abstract integration of an EtherCAT device in a project tool is realized. With the help of the ESI file a detailed knowledge of EtherCAT is not required to configure the device. The TwinCAT EtherCAT master/System Manager needs the device description files in order to generate device configuration in online or offline mode.

7.1.1 Import of ESI File

Copy the XML description file "ECAT-2074A.xml" of the ECAT-2074A device into the TwinCAT system directory and restart the TwinCAT system.

For TwinCat 3.1 copy the ESI file "ECAT-2074A.xml" in the following directory: C:\TwinCAT\3.1\Config\Io\EtherCAT

Software	Default directory path
Beckhoff EtherCAT Configuration	C:\EtherCAT Configurator\EtherCAT
Beckhoff TwinCAT 3.x	C:\TwinCAT\3.x\Config\Io\EtherCAT
Beckhof TwinCAT 2.x	C:\TwinCAT\Io\EtherCAT

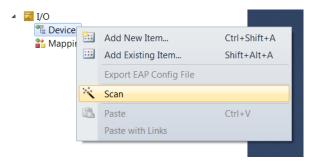
Table 8: ESI file target directory

7.2 Device Setup and Configuration

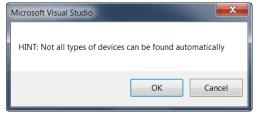
In this manual only the online configuration of the slave module will be discussed. For offline configuration procedure please consult the TwinCAT user manual.

The following conditions must be met before a configuration can be set up:

The ECAT-2074A slave devices must be connected via EtherCAT cables to the EtherCAT


master. In this manual TwinCAT 3.1 version is being used as the EtherCAT master and configuration tool

- The ECAT-2074A devices has to be connected to a power supply and ready for communication
- Set the TwinCAT in CONFIG mode.


7.2.1 Scanning of the EtherCAT Device

After the TwinCAT has been set into CONFIG mode the online device search can be started.

Step 1: Right-click the "Devices" in the configuration tree to open the scan dialog. Click "Scan" to search the ECAT-2074A device.

Step 2: Select "OK"

Step 3: Select the Ethernet device (Ethernet chip) to which the ECAT-2074A is connected to. Confirm the selection with "OK".

Figure 17:List of Ethernet chips detected on the EtherCAT master PC

Step 4: Start the scan process by clicking "Yes"

Step 5: Set the ECAT-2074A into Free-Run mode by clicking "Yes"

By default all three encoder channels are displayed in the tree view:

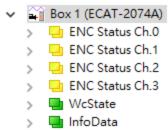
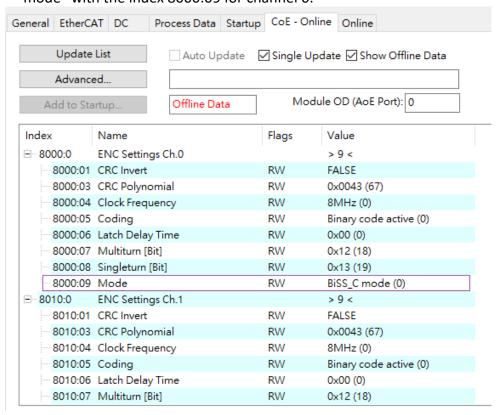


Figure 18: Default parameter selection for the ECAT-2074A

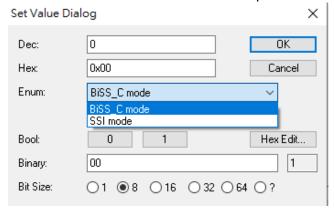
7.2.2 Encoder Counter Configuration

The configuration of the ECAT-2074A device such as Transmission interface, bit number of position, etc. only needs to be done once before the actual encoder counting starts. These parameters have to be accessed via the CANopen over EtherCAT (CoE) protocol and are listed in the "CoE online" tab. The CoE protocol has a lower priority than the cyclic process data object (PDO) communication. Therefore the CoE parameters will not be updated in every cycle but only when the master has spare time.

Encoder relevant CoE parameter are listed in the Encoder setting object (Index 0x8000, 0x8010, 0x8020, 0x8030)


For each channel the following configuration procedure has to be done:

- Transport interface mode setting
- Multiturn [Bit] and Singleturn [Bit]


- Data encoding mode
- Transmission frequency
- CRC polynomial
- CRC inverted setting

Example of setting the encoder counting mode for each channel:

Step 1: Go to "ENC Setting Ch.0" of a channel. Extend the index tree and double click "mode" with the index 8000:09 for channel 0.

Step 2: Select one of the modes listed in the drop list and click "OK"

Step 3: Once the setting has been successfully sent to the slave it will be displayed in the CoE online parameter list. In the figure below "SSI mode has been selected for channel 0. This value needs only to be set once and therefore does not have to be sent in every cycle time.

enera	al EtherCA	AT DC	Process Data	Startup	CoE - Or	nline Online	
	Update	List	_ Auto Upo	date [☑ Single U	pdate 🗹 Show Offline Data	
	Advance	ed					
	Add to Sta	rtup	Offline Date	a	Мо	dule OD (AoE Port): 0	
Inde	ex	Name			Flags	Value	
÷6	5020:0	ENC Inputs	Ch.2			> 18 <	
÷6	5030:0	ENC Inputs	Ch.3			> 18 <	
≐ 8	3000:0	ENC Setting	gs Ch.0			> 9 <	
	8000:01	CRC Invert			RW	FALSE	
	8000:03	3 CRC Polynomial		RW	0x0043 (67)		
	8000:04	Clock Frequ	iency		RW	8MHz (0)	
	8000:05	Coding			RW	Binary code active (0)	
	8000:06	Latch Delay	/Time		RW	0x00 (0)	
	8000:07	Multiturn [8	Bit]		RW	0x12 (18)	
	80:008	Singleturn [[Bit]		RW	0x13 (19)	
	8000:09	Mode			RW	SSI mode (1)	
÷ 8	3010:0	ENC Setting	gs Ch.1			> 9 <	
÷ 8	3020:0	ENC Setting	gs Ch.2			> 9 <	
÷ 8	3030:0	ENC Setting	gs Ch.3			> 9 <	
÷ 🖊	A000:0	ENC Diag o	data Ch.0			> 3 <	
÷ 🖊	A010:0	ENC Diag o	data Ch.1			> 3 <	
÷ Δ	\020·0	FNC Diagra	lata Ch 2			> 3 <	

All the relevant encoder configurations have to be set first before the polling of the encoder counter starts. Once the parameters are set, the encoder counter is basically ready for operation.

If required, the configuration can be permanently save to an internal non-volatile memory of the ECAT-2074A. After powering on the device it will immediately be initialized according configuration setting. For saving configuration data follow the instruction of chapter 9.2.

7.2.3 EtherCAT Slave Process Data Assignment

The user has to select the process data which has to be transferred between the EtherCAT master and slave during each cycle (Process Data Objects, PDOs). The process

data exist of two parts:

- TxPDO: Data which is being read by the master (e.g. encoder channel status).
- RxPDO: Data or parameters which is being sent to the slave (This module has no parameters for this part).

Once the parameters of the process data image has been defined by the user the master will exchange the in- and output data in every cycle.

The ECAT-2074A allows the user to select for each encoder channel the process data to be transmitted. In TwinCAT the supported process data objects are listed in the "PDO Assignment (0x1C13)" boxes.

PDO selection procedure:

- 1. Activate the "Process Data" tab of the ECAT-2074A slave
- 2. For TxPDO selection: click in the "Sync Manager" window the "Inputs" line and in the "PDO Assignment (0x1C13)" window select for each encoder channel the required TxPDO. The process data contains status variables for the encoder and latch values, and signal status information. It is necessary to select this process data object otherwise it is not possible to retrieve any status information from the encoder channel.

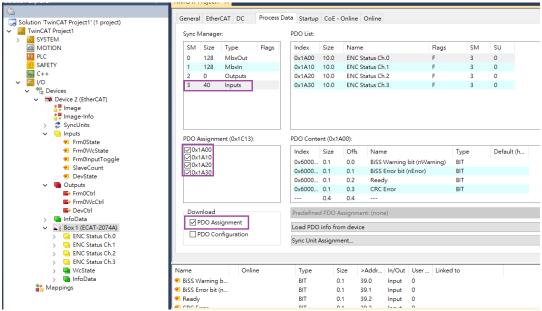


Figure 19: Predefined PDO assignment selection

Download the new PDO assignment to the Sync manager of the slave by clicking "Restart TwinCAT (Config Mode)" in the drop down menu. Make sure the check box next "PDO Assignment" is enabled.

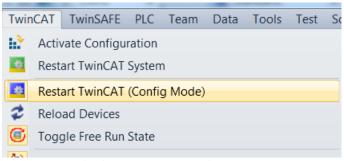


Figure 20: Download PDO assignment and restart TwinCAT

The device is now ready to be set into Free-Run or DC mode.

8 Parameter Description

8.1 Transmission Mode

The ECAT-2074A encoder master supports two modes:

- SSI (Serial Synchronous Interface)
- BiSS-C (BiSS Continuous Mode)

The encoder counter mode has to be set via CoE (0x80n0:09,)

SSI mode: The encoder master station will transmit periodic pulses to the encoder, the encoder will transmit data according to the rising edge of the pulse, and the encoder master will latch data on the falling edge. After the transmission is completed, the encoder master will maintain a high potential, and the encoder will turn to a high potential after a period of Timeout, and the next transmission can be transmitted at this time.

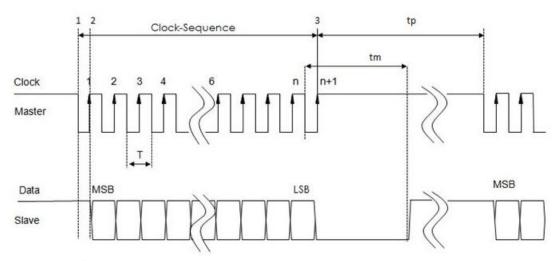


Figure 21: SSI mode

BiSS-C mode: The encoder master will transmit periodic pulses to the encoder, and the encoder will Ack on the second rising edge of MA. At this time, SLO will remain at low potential until the encoder is ready for data, and then transmit a high potential "Start" bit, there will be a low potential "0" bit immediately after the "start" bit to transmit the position data, after the position data transmission is completed, the error bit and warn bit will be transmitted, both the error bit and the warn bit are effective at low potential (active low), and then transmit the CRC check code. When the CRC check code is transmitted, the MA will maintain a high potential, and the SLO will return to a high potential after a period of low potential Timeout, and then the next transmission can be ICP DAS

transmitted.

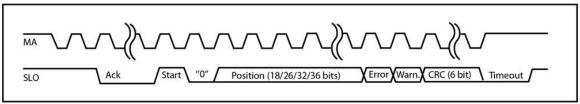


Figure 22: BiSS-C mode

8.2 Number of Position Bits

Set the number of bits for Multiturn and Singleturn. These number has to be set via CoE:

Multiturn: 0x80n0: 07 Singleturn: 0x80n0: 08

n - represents the channel number

Set this parameter according to the number of pisition bits by the encoder. The maximum number of bits for Multiturn and Singleturn can be set to 32bit individually, but the sum of the two should not exceed 46bit t (BiSS-C includes error, warming, and CRC). If the encoder only has Singleturn, set Multiturn to 0.

8.3 Transmission Pulse Frequency

The encoder master station will transmit pulse according to the frequency, and the encoder will transmit data at the same frequency. Notice to the maximum and minimum frequencies supported by the encoder, otherwise the correct data may not be read.

Clock Frequency number	Clock Frequency
0	10MHz
1	5MHz
2	2.5MHz
3	1.25MHz
4	625KHz
5	312.5KHz
6	156.25KHz

Table 9: Filter clock frequencies

The transmission pulse frequency has to be set via CoE (0x80n0:04,)

8.4 Data Encoding Mode

The encoder master supports two data encoding modes:

- Binary code
- Gray code

Data encoding mode has to be set via CoE (0x80n0:05)

n - represents the channel number

Set this parameter according to the data encoding mode of the encoder. The encoding mode is divided into Binary code and -Gray code. The biggest difference between the two is that Gray code only one bit will be changed as moves to the next position. Therefore, it can reduce the occurrence of errors in reading values

8.5 CRC Generator Polynomial

In BISS-C mode, the encoder will add a CRC code at the end of the data, and this check code is generated according to the CRC generator polynomial, so the encoder master needs to know the CRC generator polynomial used by the encoder to check the data.

The CRC generator polynomial setting must include the highest bit, and Up to 9 bits can be set, which is CRC-8. For example, The polynomial is: x6 + x1 + x0 (CRC-6), expressed in binary as 1000011, that is, set to 67 (decimal).

CRC generator polynomial has to be set via CoE. (0x80n0:03)

n - represents the channel number

8.6 CRC Invert

In the BISS-C mode, the encoder will add the CRC code at the end of the data. Some encoders will invert the calculated CRC code before transmitting. In this case, this parameter must be set to true.

CRC invert has to be set via CoE. (0x80n0:01) n - represents the channel number

8.7 Measured Data Delay Time

The signal transmitted between the encoder master and the encoder will be delayed due to the length of the cable. The longer the line length is ,This delay time will not be affected at low transmission frequency (the delay time is much shorter than the transmission period), But at high transmission frequencies, it is necessary to set the delay compensation to get the correct value

This value is the data delay time measured by ECAT-2074A. 0x80n0 : 06 , n - represents the channel number .

8.8 Latch Data Delay Time

In BiSS-C mode, ECAT-2074A has an automatic compensation mechanism for data delay. The module will set it after calculation according to the measured delay time and the currently set frequency. This value is automatically set by the user without additional set up.

0x80n0: 06, n - represents the channel number •

8.9 Encoder Status

This section will describe all the variables listed in the TxPDOs: 0x1An0 (n - represents the channel number). These variables basically show the status and position value of the each channel (

參數	物件	說明
BiSS Warning bit (nWarning)	0x60n0:01	In BiSS-C mode, the encoder transmits the Warning bit to the encoder master, and this signal is active low.
BiSS Error bit (nError)	0x60n0:03	In BiSS-C mode, the encoder transmits the error bit to the encoder master, and this signal is active low.
Ready	0x60n0:04	Displays whether the data has been ready.
CRC Error	0x60n0:05	Displays whether the CRC check result is correct or not.
Input cycle counter	0x60n0:09	Displays whether new data has been successfully transmitted, plus one if the data is successfully read.
Multiturn Position	0x60n0:0F	Display the Multiturn position read by the encoder master.
Singleturn Position	0x60n0:10	Display the Singleturn position read by the encoder master.

).

參數	物件	說明
BiSS Warning bit	0x60n0:01	In BiSS-C mode, the encoder transmits the Warning bit to

(nWarning)		the encoder master, and this signal is active low.
BiSS Error bit (nError)	0x60n0:03	In BiSS-C mode, the encoder transmits the error bit to the encoder master, and this signal is active low.
Ready	0x60n0:04	Displays whether the data has been ready.
CRC Error	0x60n0:05	Displays whether the CRC check result is correct or not.
Input cycle counter	0x60n0:09	Displays whether new data has been successfully transmitted, plus one if the data is successfully read.
Multiturn Position	0x60n0:0F	Display the Multiturn position read by the encoder master.
Singleturn Position	0x60n0:10	Display the Singleturn position read by the encoder master.

Table 10: Encoder status variables

9 CoE Interface

9.1 General Description

The CoE interface (CANopen over EtherCAT) is used for parameter management of EtherCAT devices. The CoE interface displays all the objects and parameters which are required for operating and diagnosing the ECAT-2074A device. Some parameters are fixed and can not be modified, they for example indicate the operating status of the device or the device properties. Encoder configuration parameters need to be set before the actual motion control starts. These parameter setting are determined by the encoder type and the setup of the system.

CoE parameters has to be accessed via the CAN over EtherCAT protocol. The EtherCAT master accesses the local CoE lists of the slaves via CAN over EtherCAT. The user does not need to understand the CoE protocol when using the TwinCAT System Manager for CoE parameter configuration.

The CoE parameters describe a wide range of features such as manufacturer ID, device name, process data settings and configuration parameters.

The relevant ranges of the CoE list are:

0x1000: Stores fixed information of the device, including name, manufacturer, serial

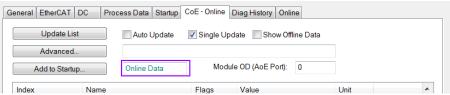
number etc.. In addition stores information about the current and available process data configurations.

- 0x1A00: TxPDO mapping
- 0x8000: Stores all the configuration data which are required for the encoder counter.
- 0x6000: Input PDOs ("input" from the perspective of the EtherCAT master)

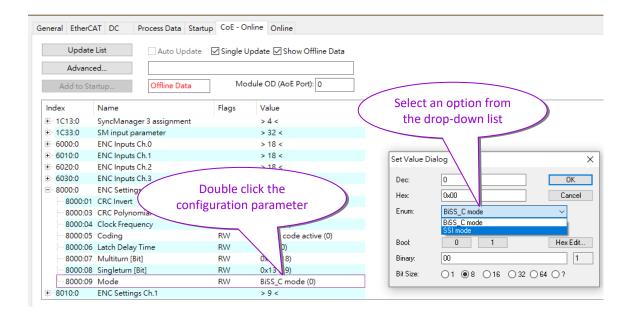
The 錯誤! 找不到參照來源。 shows all of the CoE objects available for the ECAT-2074A device, ranging from 0x1000 to 0xF009. The parameters of the objects can be accessed by expanding the tree in the "CoE-Online" tab. The objects and their properties are described in chapter 10.

Figure 23: "CoE - Online " tab

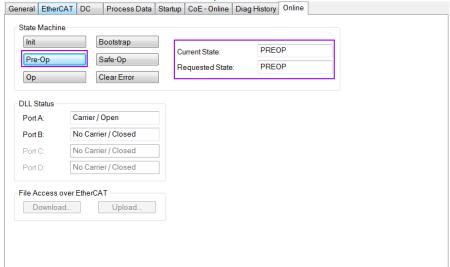
9.2 Save Configuration Data to Memory


In this section the procedure of saving encoder configuration parameters to the non-volatile memory of the ECAT-2074A is being discussed.

The CoE object range 0x8000 to 0x8030 contains all the parameters needed to configure the ECAT-2074A. TwinCAT allows the user to set the configuration parameters via the System Manager (錯誤! 找不到參照來源。) or from a TwinCAT PLC via ADS (TcEtherCAT.lib library).

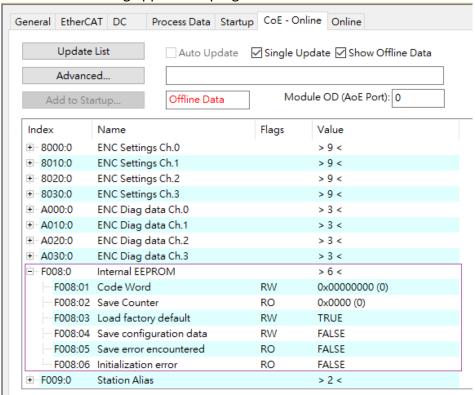

If slave CoE parameters are set online, the ECAT-2074A device does not automatically store the data to its non-volatile memory, therefore the data will be lost once the device is switched off. The 0xF008 object provides functions to store the configuration data permanently to the non-volatile memory of the ECAT-2074A and the setting will be immediately available immediately after a restart.

Procedure for storing configuration data to the local ECAT-2074A memory:

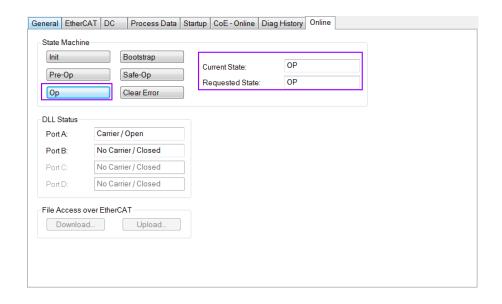

Step 1: Make sure the TwinCAT System Manager is connected to the ECAT-2074A and the "CoE-Online" tab is showing that the slave is online.

Step 2: Do all the necessary configuration by entering the correct parameter values for the configuration objects (0x8000, 0x8010, 0x8020, 0x8030). The setting is being done by double clicking the configuration parameter and selecting an option from the shown drop list box . In the following picture the signal polarity of the transmission mode of encoder channel 0 is being set.

Step 3: After all the configurations have been done set the slave into Pre-Op mode. Data can only be stored to the local device if it is in Pre-Op mode. On the "Online" tab click the "Pre-OP" button to put the slave into Pre-OP mode.


Step 4: The parameters of the 0xF008 object handles the save procedure.

- 1. Scroll to the end of the "CoE-Online" list and expand the tree view of the 0xF008 object
- 2. Enter the value 0x12345678 for the "Code Word"
- 3. Set the "Save configuration data" from FALSE to TRUE in order to save the configuration data to the internal EEPROM. The parameter "Save error encountered" (F008:05) indicates whether an error occurred during the save process.
- 4. In order for the configuration data to be loaded after a device restart set the "Load factory default" to FALSE. It is always possible to return to the


- factory default setting by setting this value back to TRUE.
- 5. The "Save Counter" (F008:02) shows how often configuration data has been stored to the local memory in the lifetime of the device.

ATTENTION:

The local memory only supports a limited number of save operations. Depending on the memory version once the save operation exceeds 10000 cycles it can no longer be guaranteed that data are reliably saved or are still readable. Therefore the "Save configuration data" (F008:04) and the "Load factory default" (F008:03) should not be continuously set from the controlling application program.

Step 5: Set the ECAT-2074A back into OP mode.

10 Object Description and Parameterization

10.1 Standard Objects

Index 1000 Device type

Index (hex)	Name	Description	Data type	Flags	Default
1000:0	Device type	Device type of the EtherCAT slave	UINT32	RO	0x00020000

Index 1008 Device name

Index (hex)	Name	Description	Data type	Flags	Default
1008:0	Device name	Device name of the EtherCAT slave	STRING	RO	ECAT-2074A

Index 1009 Hardware version

Index (hex)	Name	Description	Data type	Flags	Default
1009:0	Hardware	Hardware version of the EtherCAT	STRING	RO	1.0
	version	slave			(or greater)

Index 100A Software version

Index (hex)	Name	Description	Data type	Flags	Default
100A:0	Software	Software version of the EtherCAT	STRING	RO	1.0
	version	slave			(or greater)

Index 1018 Identity

Index (hex)	Name	Description	Data type	Flags	Default
1018:0 Identity			UINT8	RO	0x04
1018:01	Vendor ID	Vendor ID of the EtherCAT slave	UINT32	RO	0x00494350
1018:02	Product code	Product code of the EtherCAT slave	UINT32	RO	0x00207441 (2074A)
1018:03 Revision		Revision number of the EtherCAT slave	UINT32	RO	0x00010000
1018:04	Serial number	Serial number of the EtherCAT slave (not supported)	UINT32	RO	0x00000000

Index 10F1 Error settings

Index (hex)	Name	Description	Data type	Flags	Default
10F1:0	Error		UINT8	RO	0x02
	settings				
10F1:01	Local error	Not implemented	UINT32	RW	0x00000001
	reaction				
10F1:02	Sync error	For DC mode only:	UINT16	RW	0x0004
	counter limit	The Sync Error Counter is			
		incremented with every missing Sync			
		Management Event by three and			
		decremented by one if an event is			

received. If the Sync Error Counter		
exceeds this limit the		
system changes into the SAFEOP		
state with the 'Synchronization Lost'		
error. The Sync		
Error Counter is reset when the error		
was acknowledged.		

10.2 TxPDO Mapping Objects

Index 0x1An0 ENC StatusCh.n (TxPDO-Map)

Index (hex)	Name	Description	Data type	Flags	Default
1An0:0	ENC Status	Encoder Status	UINT8	RO	0x0B
1An0:01	StatusBiSS Warning bit	BiSS Warning bit data	UINT32	RO	0x60n00101
	(nWarning)	(1 Bit)			
1An0:02	StatusBiSS Error bit	BiSS Error bit data	UINT32	RO	0x00000201
	(nError)	(1 Bit)			
1An0:03	StatusReady	Whether the data is	UINT32	RO	0x60n00301
		ready to read or not			
		(1 Bit)			
1An0:04	StatusCRC Error	CRC check error	UINT32	RO	0x60n00401
		(1 Bit)			
1An0:05	StatusGap1	empty	UINT32	RO	0x00000004
		(4 Bit)			
1An0:06	StatusInput cycle counter	Position data counter,	UINT32	RO	0x60n00908
		when there is correct			
		reading data, this			
		number will increase by			
		1 (8 Bit)			
1An0:07	StatusMultiturn Position	Encoder multiturn	UINT32	RO	0x60n01120
		position data (32 Bit)			
1An0:08	StatusSingleturn Position	Encoder singleturn	UINT32	RO	0x60n01220
		position data (32 Bit)			

[&]quot;n" represents the channel number

10.3 Sync Manager Objects

Index 0x1C00 Sync manager type

index exteed syne manager type					
Index	Name	Description	Data type	Flags	Default
(hex)					
1C00:0	Sync manager type	Using the sync managers	UINT8	RO	0x04
1C00:01	SubIndex 001	Sync-Manager Type Channel	UINT8	RO	0x01
		1: Mailbox Write			
1C00:02	SubIndex 002	Sync-Manager Type Channel	UINT8	RO	0x02

		2: Mailbox Read			
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write	UINT8	RO	0x03
		(Outputs)			
1C00:04	SubIndex 004	Sync-Manager Type Channel	UINT8	RO	0x04
		4: Process Data Read			
		(Inputs)			

Index 0x1C13 TxPDO assign

Index (hex)	Name	Description	Data type	Flags	Default
1C13:0	TxPDO assign	SyncManager 3 assignment: PDO Assign Inputs	UINT8	RO	0x20
1C13:01	SubIndex 001	Default assignment: ENC Status Channel 0	UINT16	RW	0x1A00
1C13:02	SubIndex 002	Default assignment: ENC Status Channel 1	UINT16	RW	0x1A10
1C13:03	SubIndex 003	Default assignment: ENC Status Channel 2	UINT16	RW	0x1A20
1C13:04	SubIndex 004	Default assignment: ENC Status Channel 4	UINT16	RW	0x1A30

Index 0x1C33 Sync Manager (SM) input parameter

Index (hex)	Name	Description	Data type	Flags	Default
1C33:0	SM input parameter	Synchronization parameters for the inputs	UINT8	RO	0x20
1C33:01	Synchronization Type	Current synchronization mode: O: Free Run 1: Synchron with SM 3 Event (no outputs available) 2: DC - Synchron with SYNC0 Event 3: DC - Synchron with SYNC1 Event 34: Synchron with SM 2 Event (outputs available)	UINT8	RO	0x0022
1C33:02	Cycle Time	Cycle time (in ns): Free Run: Cycle time of the local timer Synchronous with SM 2 event: Master cycle time DC mode: SYNCO/SYNC1 Cycle Time	UINT8	RO	0x00000000
1C33:04	Synchronization Types supported	Supported synchronization modes: Bit 0 = 1: free run is	UINT8	RO	0x8007

1C33:05	Minimum Cycle Time	supported Bit 1 = 1: Synchron with SM 2 event is supported Bit 2-3 = 01: DC mode is supported Bit 4-5 = 10: Output shift with SYNC1 event (only DC mode) Minimum cycle time (in ns)	RO	0x0000000
1C33:06	Calc and Copy Time	Time between reading of the inputs and availability of the Inputs data for the master (in ns, only DC mode)	RO	0x0000000
1C33:08	Get Cycle Time	 0: Measurement of the local cycle time is stopped 1: Measurement of the local cycle time is started Set parameter to 1 in order to update the Cycle Time (1C32:02, 1C33:02) parameter with the maximum measured value 	RW	0x0000
1C33:09	Delay Time	Time between SYNC1 event and reading of the inputs (in ns, only DC mode)	RO	0x00000000
1C33:0A	Sync0 Cycle Time		RW	0x00000000
1C33:0B	SM-Event Missed	Number of missed SM events in OPERATIONAL (DC mode only)	RO	0x0000
1C33:0C	Cycle Time Too Small	Cycle was not completed in time or the next cycle began too early	RO	0x0000
1C33:20	Sync Error	The synchronization was not correct in the last cycle (outputs were output too late; DC mode only)	RO	FALSE

10.4 Input Data

Index 0x60n0 ENC Inputs Ch.n

Index	Name	Description	Data type	Flags	Default
(hex)					
60n0:0	Get encoder input status	Encoder input status	UINT8	RO	0x13
60n0:01	BiSS Warning bit (nWarning)	The Warning bit	BOOLEAN	RO	
		transmitted by the the			
		Biss protocol encoder			
		when transmitting			

		data, This state is active low.			
60n0:02	BiSS Error bit (nError)	The Error bit transmitted by the the Biss protocol encoder when transmitting data, This state is active low.	BOOLEAN	RO	
60n0:03	Ready	TRUE when data preparation is complete, otherwise keep FALSE	BOOLEAN	RO	
60n0:04	CRC Error	Use the data received by the Biss protocol to perform CRC check, Remains FALSE if successful, TRUE if failed.	BOOLEAN	RO	
60n0:09	Input cycle counter	Whenever the PDO data is read, it will first check whether the data is wrong, if the data is read correctly, this number will increase by 1	UINT8	RO	
60n0:11	Multiturn Position	For the multiturn position data of the encoder, the number of bits to be transmitted can be set through the object (80n0:07)	UINT32	RO	
60n0:12	Singleturn Position	For the singleturn position data of the encoder, the number of bits to be transmitted can be set through the object (80n0:07)	UINT32	RO	

[&]quot;n" represents the channel number

10.5 Configuration Data

Index 0x80n0 ENC Settings Ch.n

Index (hex)	Name	Description	Data type	Flags	Default
80n0:0	ENC Settings	Encoder Settings	UINT8	RO	0x0B
80n0:01	CRC Invert	Invert CRC code bit	BOOLEAN	RW	0x01
80n0:03	CRC Polynomial	CRC generator polynomial	UINT16	RW	0x43
80n0:04	Clock Frequency	Transmission pulse frequency 0:10MHz 1:5MHz 2:2.5MHz 3:1.25MHz 4:625KHz	DT0801EN08	RW	0x00 (10MHz)
		5:312.5KHz 6:156.25kHz			
80n0:05	Coding	data encoding mode 0:Binary code 1:Gray code	DT0802EN08	RW	0x00 (Binary code)
80n0:06	Multiturn [Bit]	The number of bits of the multiturn position data of the encoder, the maximum setting is 32	UINT8	RW	0x00
80n0:078	Singleturn [Bit]	The number of bits of the singleturn position data of the encoder, the maximum setting is 32	UINT8	RW	0x20
80n0:08	Mode	The transmission protocol used by the encoder 0:BISS 1:SSI	DT0803EN08	RW	0x00 (BISS)
80n0:09	Measured Delay Time	Measure the delay time caused by the length of the line	UINT8	RO	0x00
80n0:0a	Latch Delay Time	The module automatically compensates the data delay time	UINT8	RO	0x00

[&]quot;n" represents the channel number

10.6 Information and Diagnostic Data

Index 0xA0n0 STM Diag data

Index	項目	說明	類型	標誌	預設
(hex)					
A0n0:0	STM Diag data	Encoder diagnostic status	UINT8	RO	0x06
A0n0:1	Error	Encoder error	BOOLEAN	RO	0x00

A0n0:2	SCD Error	DC sync error	BOOLEAN	RO	0x00
A0n0:3	Channel Status	channel enabled status 0: Disable 1: Enable	BOOLEAN	RO	0x00

[&]quot;n" represents the channel number

10.7 Configuration Parameters Storage

Index 0xF008 Internal EEPROM

Index (hex)	Name	Description	Data type	Flags	Default
F008:0	Internal EEPROM	Storing CoE parameters to the internal EEPROM.	UINT8	RO	0x05
F008:01	Code Word	Password for saving CoE configuration data to the EEPROM Password: 0x12345678	UINT32	RW	0x00000000
F008:02	Save Counter	Total number of save sequence	UINT16	RO	0x0000
F008:03	Load factory default	Load factory default configuration immediately after power on. • By setting this parameter to FALSE the user set configuration data (0x8000 to 0x8020) will be loaded after power on	BOOLEAN	RW	TRUE
F008:04	Save configuration data	Save all configuration setting to local nonvolatile memory. • Set to TRUE in order to save the configuration data (0x8000 to 0x8020) to the memory of the ECAT-2074A	BOOLEAN	RW	FALSE
F008:05	Save error encountered	Indicates whether data has been successfully written to memory	BOOLEAN	RO	FALSE
F008:06	Initialization error	Internal EEPROM	BOOLEAN	RO	FALSE

	aaaaa failad		
	i access failed		

10.8 Station alias Configuration

Index F009 Station Alias

Index (hex)	項目	說明	類型	標誌	預設
F009:0	Station Alias		UINT8	RO	0x02
F009:01	Rotary switch value	rotary switch value set this value to the corresponding ESC register if the "ESC register load setting" is 0	UINT16	RO	0x00
F009:02	ESC register load setting	Get alias value from rotary switch or SII, and set this value to the corresponding ESC register: 0: rotary switch 1: SII	BOOLEAN	RW	0x0